A platform for research: civil engineering, architecture and urbanism
Seismic vibration control of building structures with multiple tuned mass damper floors integrated
Floor isolation system (FIS) achieving very small floor accelerations has been used to ensure human comfortability or protect important equipments in buildings. Tuned mass damper (TMD) with large mass ratios has been demonstrated to be robust with respect to the changes in structural properties. This paper presents the concept of a TMD floor vibration control system, which takes advantages of both the FIS and TMD. Such a system is called ‘TMD floor system’ herein. The TMD floor system (TMDFS) in which building floors serve as TMDs can achieve large mass ratio without additional masses. Furthermore, multiple TMD floors installed in a building can control multimode vibrations. Then, an optimal design process, where the objective function is set as the maximum magnitude of the frequency response functions of inter-storey drifts, is proposed to determine the TMD floor parameters. Additionally, the multimode approach is applied to determine the optimal locations of TMD floors if not all of the floors in a building can serve as TMDs. In addition to the numerical simulations, a scaled model shaking table experiment is also conducted. Both the numerical and experimental results show that the absolute accelerations of the TMD floors are smaller than those of the main structural storeys, which indicates the TMDFS maintains the merit of FIS while greatly reducing seismic responses of main structures.
Seismic vibration control of building structures with multiple tuned mass damper floors integrated
Floor isolation system (FIS) achieving very small floor accelerations has been used to ensure human comfortability or protect important equipments in buildings. Tuned mass damper (TMD) with large mass ratios has been demonstrated to be robust with respect to the changes in structural properties. This paper presents the concept of a TMD floor vibration control system, which takes advantages of both the FIS and TMD. Such a system is called ‘TMD floor system’ herein. The TMD floor system (TMDFS) in which building floors serve as TMDs can achieve large mass ratio without additional masses. Furthermore, multiple TMD floors installed in a building can control multimode vibrations. Then, an optimal design process, where the objective function is set as the maximum magnitude of the frequency response functions of inter-storey drifts, is proposed to determine the TMD floor parameters. Additionally, the multimode approach is applied to determine the optimal locations of TMD floors if not all of the floors in a building can serve as TMDs. In addition to the numerical simulations, a scaled model shaking table experiment is also conducted. Both the numerical and experimental results show that the absolute accelerations of the TMD floors are smaller than those of the main structural storeys, which indicates the TMDFS maintains the merit of FIS while greatly reducing seismic responses of main structures.
Seismic vibration control of building structures with multiple tuned mass damper floors integrated
Xiang, Ping (author) / Nishitani, Akira (author)
Earthquake Engineering & Structural Dynamics ; 43 ; 909-925
2014
17 Seiten
Article (Journal)
English
Seismic vibration control of building structures with multiple tuned mass damper floors integrated
Online Contents | 2014
|Semiactive Control of Building Structures with Semiactive Tuned Mass Damper
Online Contents | 2005
|Seismic response control of steel benchmark building with a tuned mass damper
Springer Verlag | 2020
|