A platform for research: civil engineering, architecture and urbanism
Micromechanics Damage Analysis in Fiber-Reinforced Composite Material Using Finite Element Method
Fiber-reinforced composite materials (FRC) are used in a wide range of applications, since FRC exhibits higher strength-to-density ratio in comparison to traditional materials due to long fibers embedded in a matrix material. Failures occurred in FRC components are complicated because of the interaction of the constituents. The aim of this study is to investigate damage behavior in a unidirectional glass fiber-reinforced epoxy on both macro-and micro-levels by using finite element method. The Hashins criterion was applied to define the onset of macroscopic damage. The progression of the macroscopic damage was described using the Matzenmiller-Lubliner-Taylor model that was based on fracture energy dissipation of material. To examine the microscopic failure FE representative volume elements consisting of the glass fibers surrounded by epoxy matrix with defined volume fraction was considered. Elastic-brittle isotropic behaviour and the Coulomb-Mohr criterion were applied for both fiber and epoxy. The results of the macroscopic and microscopic analyses were correlated. As a result, damage initiation and damage development for the investigated FRC could be predicted.
Micromechanics Damage Analysis in Fiber-Reinforced Composite Material Using Finite Element Method
Fiber-reinforced composite materials (FRC) are used in a wide range of applications, since FRC exhibits higher strength-to-density ratio in comparison to traditional materials due to long fibers embedded in a matrix material. Failures occurred in FRC components are complicated because of the interaction of the constituents. The aim of this study is to investigate damage behavior in a unidirectional glass fiber-reinforced epoxy on both macro-and micro-levels by using finite element method. The Hashins criterion was applied to define the onset of macroscopic damage. The progression of the macroscopic damage was described using the Matzenmiller-Lubliner-Taylor model that was based on fracture energy dissipation of material. To examine the microscopic failure FE representative volume elements consisting of the glass fibers surrounded by epoxy matrix with defined volume fraction was considered. Elastic-brittle isotropic behaviour and the Coulomb-Mohr criterion were applied for both fiber and epoxy. The results of the macroscopic and microscopic analyses were correlated. As a result, damage initiation and damage development for the investigated FRC could be predicted.
Micromechanics Damage Analysis in Fiber-Reinforced Composite Material Using Finite Element Method
Key Engineering Materials ; 525-526 ; 541-544
2012-11-12
4 pages
Article (Journal)
Electronic Resource
English
Micromechanics Damage Analysis in Fiber-Reinforced Composite Material Using Finite Element Method
British Library Online Contents | 2013
|Micromechanics Based Composite Material Model for Crashworthiness Explicit Finite Element Simulation
British Library Online Contents | 2001
|Micromechanics of Stiffness Damage in Ceramic-Based Fiber-Reinforced Composites
British Library Online Contents | 2002
|Micromechanics of the Deformation and Damage of Steel Fiber-reinforced Concrete
British Library Online Contents | 2007
|Micromechanics of Fiber Reinforced Cementitious Composites
Wiley | 2000
|