A platform for research: civil engineering, architecture and urbanism
Radiation Shielding Characteristics of Concretes Incorporates Different Particle Sizes of Various Waste Materials
In this study, the dependence of gamma-ray absorption coefficient on the particulate matter sizes of steel slag, iron fillings and steel balls incorporated concrete were examined. The contents of these fillers in concrete mix was kept constant to 35 wt. %. Only the filler particle size was varied during the tests. The particle size ranged from 0.2mm to 1mm for steel slags and the iron fillings and from 2.5mm to 10mm for the steel balls.The concrete samples were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation source was Cs137 radioactive element with photon energy of o.662 MeV. The results showed that gamma-ray attenuation coefficient was inversely proportional to the filler particulate matter size. Likewise the mean free paths for the tested samples were obtained. Maximum linear attenuation coefficient of 1.102±0.263cm-1 was attained for the iron filling.The iron balls and the steel slags showed much inferior values. The concrete incorporates iron filings afforded the best shielding effect. The density, microstructure, homogeneity and particulate distribution of the concrete samples were examined and evaluated using different metallographic, microscopic and measurement facilities.
Radiation Shielding Characteristics of Concretes Incorporates Different Particle Sizes of Various Waste Materials
In this study, the dependence of gamma-ray absorption coefficient on the particulate matter sizes of steel slag, iron fillings and steel balls incorporated concrete were examined. The contents of these fillers in concrete mix was kept constant to 35 wt. %. Only the filler particle size was varied during the tests. The particle size ranged from 0.2mm to 1mm for steel slags and the iron fillings and from 2.5mm to 10mm for the steel balls.The concrete samples were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation source was Cs137 radioactive element with photon energy of o.662 MeV. The results showed that gamma-ray attenuation coefficient was inversely proportional to the filler particulate matter size. Likewise the mean free paths for the tested samples were obtained. Maximum linear attenuation coefficient of 1.102±0.263cm-1 was attained for the iron filling.The iron balls and the steel slags showed much inferior values. The concrete incorporates iron filings afforded the best shielding effect. The density, microstructure, homogeneity and particulate distribution of the concrete samples were examined and evaluated using different metallographic, microscopic and measurement facilities.
Radiation Shielding Characteristics of Concretes Incorporates Different Particle Sizes of Various Waste Materials
Advanced Materials Research ; 925 ; 190-194
2014-04-17
5 pages
Article (Journal)
Electronic Resource
English
Radiation Shielding Characteristics of Concretes Incorporates Different Waste Materials
Tema Archive | 2013
|Radiation Shielding Characteristics of Concretes Incorporates Different Waste Materials
British Library Online Contents | 2014
|Radiation shielding of concretes containing different aggregates
Online Contents | 2006
|Radiation shielding of concretes containing different aggregates
Elsevier | 2005
|