A platform for research: civil engineering, architecture and urbanism
Masonry Spires: 3D Models to Understand their Seismic Vulnerability
The May 2012 Emilia earthquake has highlighted the important vulnerability of masonry spires at the top of bell towers of churches. Indeed, almost half of those in the epicentral area have shown a typical damage mechanism consisting in the shear sliding and overturning of the top of the spire. Given the recurrence of this phenomenon, the present paper tries to provide a contribution to the comprehension of the seismic behaviour of the spires through the numerical analysis of three case studies. In particular, the work analyses the spires of the churches of San Nicola di Bari in Cortile, near Carpi (MO); Sant'Egidio in Cavezzo (MO), and Sant'Agostino in Sant'Agostino (FE). The numerical models of these masonry structures were made using Abaqus Finite Element software. After the creation of the three-dimensional geometric models, a first nonlinear static analysis of the entire bell tower was performed adopting for masonry the Abaqus “concrete damage plasticity model”. Once the stability of the bell tower was verified for dead loads, the non-linear time-step dynamic analysis was faced. This required the definition of the seismic input at the base of the tower, through the accelerograms recorded by the closest stations. The nonlinear dynamic analysis of the global model of the bell tower provided the floor response spectra at the base and at the top of the spire. Indeed the comparison between spectra at the ground and at the top highlights the filter effect of the stem of the bell tower with a significant increase in accelerations at the top. This effect may explain the widespread damage observed at the top of the spires. Eventually, three different non-invasive intervention techniques were proposed in compliance with the principles of restoration and were modelled to compare their behaviour.
Masonry Spires: 3D Models to Understand their Seismic Vulnerability
The May 2012 Emilia earthquake has highlighted the important vulnerability of masonry spires at the top of bell towers of churches. Indeed, almost half of those in the epicentral area have shown a typical damage mechanism consisting in the shear sliding and overturning of the top of the spire. Given the recurrence of this phenomenon, the present paper tries to provide a contribution to the comprehension of the seismic behaviour of the spires through the numerical analysis of three case studies. In particular, the work analyses the spires of the churches of San Nicola di Bari in Cortile, near Carpi (MO); Sant'Egidio in Cavezzo (MO), and Sant'Agostino in Sant'Agostino (FE). The numerical models of these masonry structures were made using Abaqus Finite Element software. After the creation of the three-dimensional geometric models, a first nonlinear static analysis of the entire bell tower was performed adopting for masonry the Abaqus “concrete damage plasticity model”. Once the stability of the bell tower was verified for dead loads, the non-linear time-step dynamic analysis was faced. This required the definition of the seismic input at the base of the tower, through the accelerograms recorded by the closest stations. The nonlinear dynamic analysis of the global model of the bell tower provided the floor response spectra at the base and at the top of the spire. Indeed the comparison between spectra at the ground and at the top highlights the filter effect of the stem of the bell tower with a significant increase in accelerations at the top. This effect may explain the widespread damage observed at the top of the spires. Eventually, three different non-invasive intervention techniques were proposed in compliance with the principles of restoration and were modelled to compare their behaviour.
Masonry Spires: 3D Models to Understand their Seismic Vulnerability
Key Engineering Materials ; 817 ; 317-324
2019-08-16
8 pages
Article (Journal)
Electronic Resource
English
Masonry , Seismic Damage , Tower , Spire
Masonry Spires: 3D Models to Understand their Seismic Vulnerability
British Library Conference Proceedings | 2019
|Seismic response of stone masonry spires: Analytical modeling
Online Contents | 2012
|Seismic response of stone masonry spires: Computational and experimental modeling
Online Contents | 2012
|British Library Online Contents | 2002
|