A platform for research: civil engineering, architecture and urbanism
Design Guidelines on the Ultimate Strength of Retrofitted Deep Concrete Coupling Beams by Laterally Restrained Side Plates
Existing deep reinforced concrete (RC) coupling beams with low shear span ratios and conventionally reinforced shear stirrups tend to fail in a brittle manner with limited ductility and deformability under reversed cyclic loading. Experimental and numerical studies have demonstrated the effectiveness of laterally restrained steel plate (LRSP) retrofitting method in improving the seismic performance of deep RC coupling beams. In this way, the deformability and energy dissipation of the retrofitted beams are greatly enhanced. Based on the experimental studies and numerical simulation of LRSP coupling beams, an original design procedure on the ultimate strength of LRSP coupling beams is proposed. The proposed design guidelines consist of seven parts, which are (1) estimation of shear capacity of RC component, (2) estimation of plate size, (3) design of bolt group, (4) estimation of axial force, (5) determination of buckling effect coefficient, (6) shear resistance design of the retrofitted beam, and (7) flexural resistance design of the retrofitted beam.
Design Guidelines on the Ultimate Strength of Retrofitted Deep Concrete Coupling Beams by Laterally Restrained Side Plates
Existing deep reinforced concrete (RC) coupling beams with low shear span ratios and conventionally reinforced shear stirrups tend to fail in a brittle manner with limited ductility and deformability under reversed cyclic loading. Experimental and numerical studies have demonstrated the effectiveness of laterally restrained steel plate (LRSP) retrofitting method in improving the seismic performance of deep RC coupling beams. In this way, the deformability and energy dissipation of the retrofitted beams are greatly enhanced. Based on the experimental studies and numerical simulation of LRSP coupling beams, an original design procedure on the ultimate strength of LRSP coupling beams is proposed. The proposed design guidelines consist of seven parts, which are (1) estimation of shear capacity of RC component, (2) estimation of plate size, (3) design of bolt group, (4) estimation of axial force, (5) determination of buckling effect coefficient, (6) shear resistance design of the retrofitted beam, and (7) flexural resistance design of the retrofitted beam.
Design Guidelines on the Ultimate Strength of Retrofitted Deep Concrete Coupling Beams by Laterally Restrained Side Plates
Applied Mechanics and Materials ; 226-228 ; 942-948
2012-11-29
7 pages
Article (Journal)
Electronic Resource
English
SAGE Publications | 2011
|Retrofit of Deep Concrete Coupling Beams by a Laterally Restrained Side Plate
British Library Online Contents | 2011
|