A platform for research: civil engineering, architecture and urbanism
Case Studies of Seismic Vibration Control of Civil Structures Using Shape Memory Alloys
Shape memory alloys (SMAs) are unique class materials that have the ability to undergo large deformations, while returning to their undeformed shape through either the applications of heat (SME) or removal of stress (SE). The unique properties lead to their wide applications in the biomedical, mechanical, aerospace, commercial industries, and recently in civil engineering. The paper presents two case studies of structural seismic vibration control using SMAs. The first one is a study of the SMA reinforced RC members. Two innovative applications in RC members, such as SMA-based Precast Concrete Frame Connection (SMA-PCFC), and SMA reinforced RC short column, were proposed. Moreover, the self-rehabilitation properties of SMAs-based Intelligent Reinforced Concrete Beams (SMA-IRCBs) were further experimentally investigated. The results show that SMAs can improve the mechanical properties of concrete members. SMA reinforced RC members have unique seismic performance compared to ordinarily steel reinforced concrete members. The second one is a study of the structural energy dissipation system using SMAs damping device. An innovative hybrid SMAs friction device (HSMAFD) which consists of pre-tensioned superelastic SMA wires and friction devices (FD) was presented. The results of cyclic tensile tests show that the HSMAFD exhibits stable large energy dissipation capacity and re-centering feature. The effectiveness of the HSMAFD in reducing horizontal response of structures subjected to strong seismic excitations was verified through shaking table tests carried out on a reduced-scale symmetric steel frame model with and without the HSMAFD.
Case Studies of Seismic Vibration Control of Civil Structures Using Shape Memory Alloys
Shape memory alloys (SMAs) are unique class materials that have the ability to undergo large deformations, while returning to their undeformed shape through either the applications of heat (SME) or removal of stress (SE). The unique properties lead to their wide applications in the biomedical, mechanical, aerospace, commercial industries, and recently in civil engineering. The paper presents two case studies of structural seismic vibration control using SMAs. The first one is a study of the SMA reinforced RC members. Two innovative applications in RC members, such as SMA-based Precast Concrete Frame Connection (SMA-PCFC), and SMA reinforced RC short column, were proposed. Moreover, the self-rehabilitation properties of SMAs-based Intelligent Reinforced Concrete Beams (SMA-IRCBs) were further experimentally investigated. The results show that SMAs can improve the mechanical properties of concrete members. SMA reinforced RC members have unique seismic performance compared to ordinarily steel reinforced concrete members. The second one is a study of the structural energy dissipation system using SMAs damping device. An innovative hybrid SMAs friction device (HSMAFD) which consists of pre-tensioned superelastic SMA wires and friction devices (FD) was presented. The results of cyclic tensile tests show that the HSMAFD exhibits stable large energy dissipation capacity and re-centering feature. The effectiveness of the HSMAFD in reducing horizontal response of structures subjected to strong seismic excitations was verified through shaking table tests carried out on a reduced-scale symmetric steel frame model with and without the HSMAFD.
Case Studies of Seismic Vibration Control of Civil Structures Using Shape Memory Alloys
Advanced Materials Research ; 243-249 ; 5427-5434
2011-05-17
8 pages
Article (Journal)
Electronic Resource
English
Case Studies of Seismic Vibration Control of Civil Structures Using Shape Memory Alloys
Tema Archive | 2011
|Case Studies of Seismic Vibration Control of Civil Structures Using Shape Memory Alloys
British Library Conference Proceedings | 2011
|Seismic Vibration Control of Civil Structures Using Shape Memory Alloys: A Review
British Library Conference Proceedings | 2010
|Vibration control with shape-memory alloys in civil engineering structures
UB Braunschweig | 2011
|