A platform for research: civil engineering, architecture and urbanism
Destructive and Nondestructive Testing on Silica Fume Concrete
Factors such as poor design, bad workmanship and a harsh environment can combine to cause deterioration within a concrete structure leading to visually unacceptable surface cracking or spalling of concrete cover [. In aggressive environments, corrosion of steel reinforcing bars is responsible for major deteriorations in concrete structures. Reduction in bar diameter leads to a lower resistance, which can result in brittle failure of the bar. Initiation and progression of reinforcing steel corrosion can lead to progressive weakening of the structure due to damage accumulation over a period of time, or in sudden catastrophic failures, such as the Berlin Congress Hall, a parking garage in Minnesota [. Antonaci et al. [ conducted an experimental study on different concrete cylinders damaged in compression followed by means of linear and nonlinear ultrasonic methods. Arndt et al. [ tested a concrete slab representing typical bridge decks in order to evaluate the ability of NDT methods to detect different phases of corrosion progression in concrete. Reinforced concrete beam-shaped samples were tested by Aveldano and Ortega [ in order to characterize concrete cracking due to reinforcing corrosion under different environments. Shah and Ribakov [ performed nonlinear ultrasonic testing of cubic concrete specimens with different frequency transducers. Al-Amoudi et al. [ investgated the relatioship between compressive strength of ordinary concrete and blended cement concrete with durability propeties of concrete samples and conculded that the addition of blended cement will improve the performance of concrete in ressiting corrosion of reinforcement. The main objective of this study is to investigate the effectiveness of using nondestructive testing to assess the performance of different types of concrete such as OPC and SFC. Also, to correlate different types of nondestructive testing and to investigate the possibility of capturing the occurrence of corrosion in reinforcing bars in concrete.
Destructive and Nondestructive Testing on Silica Fume Concrete
Factors such as poor design, bad workmanship and a harsh environment can combine to cause deterioration within a concrete structure leading to visually unacceptable surface cracking or spalling of concrete cover [. In aggressive environments, corrosion of steel reinforcing bars is responsible for major deteriorations in concrete structures. Reduction in bar diameter leads to a lower resistance, which can result in brittle failure of the bar. Initiation and progression of reinforcing steel corrosion can lead to progressive weakening of the structure due to damage accumulation over a period of time, or in sudden catastrophic failures, such as the Berlin Congress Hall, a parking garage in Minnesota [. Antonaci et al. [ conducted an experimental study on different concrete cylinders damaged in compression followed by means of linear and nonlinear ultrasonic methods. Arndt et al. [ tested a concrete slab representing typical bridge decks in order to evaluate the ability of NDT methods to detect different phases of corrosion progression in concrete. Reinforced concrete beam-shaped samples were tested by Aveldano and Ortega [ in order to characterize concrete cracking due to reinforcing corrosion under different environments. Shah and Ribakov [ performed nonlinear ultrasonic testing of cubic concrete specimens with different frequency transducers. Al-Amoudi et al. [ investgated the relatioship between compressive strength of ordinary concrete and blended cement concrete with durability propeties of concrete samples and conculded that the addition of blended cement will improve the performance of concrete in ressiting corrosion of reinforcement. The main objective of this study is to investigate the effectiveness of using nondestructive testing to assess the performance of different types of concrete such as OPC and SFC. Also, to correlate different types of nondestructive testing and to investigate the possibility of capturing the occurrence of corrosion in reinforcing bars in concrete.
Destructive and Nondestructive Testing on Silica Fume Concrete
Advanced Materials Research ; 919-921 ; 1890-1893
2014-04-17
4 pages
Article (Journal)
Electronic Resource
English
Destructive and Nondestructive Testing on Silica Fume Concrete
British Library Conference Proceedings | 2014
|British Library Conference Proceedings | 1995
|Rapid Chloride Permeability Testing of Silica-Fume Concrete
British Library Online Contents | 1994
|British Library Online Contents | 2010
|Rapid Chloride Permeability Testing of Silica-Fume Concrete
Online Contents | 1994
|