A platform for research: civil engineering, architecture and urbanism
Structural Behavior of Steel Reinforced Sandwich Concrete Beam with Pumice Lightweight Concrete Core
This study is aimed to discuss structural behavior of steel reinforced sandwich concrete beams (SWB) consisted of skins and a core. The skins were made of ordinary concrete and a core was of pumice lightweight concrete. The SWB skin compressive strengths of 30 MPa and the core compressive strength of 15 MPa were considered. Twelve SWB specimen of 150x250x2500 mm with 50 mm skin thickness and 150 mm core thickness were cast and tested after curing process under flexural points loading as simply supported beams. All the beams considered were reinforced with 3D12 mm deformed bar and 8 mm stirrups with 3 spacing variations. Shear span depth ratio (a/d) of 1.8, 2.3, 2.8, and 5.4 were also considered to reflect the behavior between short and slender beams. Results showed that the flexural behavior of sandwich beams were identical with normal or lightweight concrete beams behavior. Ultimate moment of beam section slightly increased with increasing the shear span to depth ratio, which were varies between 1.26 and 2.31 of the calculated moment. The yield moment to the ultimate moment ratio vary between 0.83 and 0.99. The ductility was increased with the decreased shear reinforcement spacing. The shear strength increased as the spacing of shear reinforcement decreases in almost all a/d variations. Shear strength was also increased with the increase of a/d ratio for short beam and the other hand shear strength decreased with the increasing a/d.
Structural Behavior of Steel Reinforced Sandwich Concrete Beam with Pumice Lightweight Concrete Core
This study is aimed to discuss structural behavior of steel reinforced sandwich concrete beams (SWB) consisted of skins and a core. The skins were made of ordinary concrete and a core was of pumice lightweight concrete. The SWB skin compressive strengths of 30 MPa and the core compressive strength of 15 MPa were considered. Twelve SWB specimen of 150x250x2500 mm with 50 mm skin thickness and 150 mm core thickness were cast and tested after curing process under flexural points loading as simply supported beams. All the beams considered were reinforced with 3D12 mm deformed bar and 8 mm stirrups with 3 spacing variations. Shear span depth ratio (a/d) of 1.8, 2.3, 2.8, and 5.4 were also considered to reflect the behavior between short and slender beams. Results showed that the flexural behavior of sandwich beams were identical with normal or lightweight concrete beams behavior. Ultimate moment of beam section slightly increased with increasing the shear span to depth ratio, which were varies between 1.26 and 2.31 of the calculated moment. The yield moment to the ultimate moment ratio vary between 0.83 and 0.99. The ductility was increased with the decreased shear reinforcement spacing. The shear strength increased as the spacing of shear reinforcement decreases in almost all a/d variations. Shear strength was also increased with the increase of a/d ratio for short beam and the other hand shear strength decreased with the increasing a/d.
Structural Behavior of Steel Reinforced Sandwich Concrete Beam with Pumice Lightweight Concrete Core
Applied Mechanics and Materials ; 845 ; 158-165
2016-07-25
8 pages
Article (Journal)
Electronic Resource
English
Ductility , Lightweight Concrete , Sandwich , Pumice , Beam
Structural Behavior of Steel Reinforced Sandwich Concrete Beam with Pumice Lightweight Concrete Core
British Library Conference Proceedings | 2016
|British Library Online Contents | 2019
|