A platform for research: civil engineering, architecture and urbanism
Micro-Macro Modelling Approach of Vegetal Wools Thermal Conductivity
Biosourced materials such as vegetal wools offer major thermal insulation advantages in the green buildings field. Experimental characterisations of vegetal wools thermal conductivity as a function of their density show the existence of an optimum conduction-radiation coupled value. This specific point, as well as the properties of vegetal wools are related to the large variability of shapes and sizes of their fibres. In order to take this specificity into account, it seems particularly relevant to use micro-macro modelling methods to predict the thermal conductivities related to both conduction and radiation heat transfer phenomena. In a first time, a self-consistent method based on a cylindrical geometry (SCMcyl) is used as a modelling approach for conduction transfers. Then, a modelling approach developed by Bankvall and based on an equivalent fibre radius value is used for radiation transfers. So, by coupling these two approaches, it is possible to obtain an equivalent thermal conductivity of fibrous materials as a function of density. Finally, this method is validated by comparison with experimental data.
Micro-Macro Modelling Approach of Vegetal Wools Thermal Conductivity
Biosourced materials such as vegetal wools offer major thermal insulation advantages in the green buildings field. Experimental characterisations of vegetal wools thermal conductivity as a function of their density show the existence of an optimum conduction-radiation coupled value. This specific point, as well as the properties of vegetal wools are related to the large variability of shapes and sizes of their fibres. In order to take this specificity into account, it seems particularly relevant to use micro-macro modelling methods to predict the thermal conductivities related to both conduction and radiation heat transfer phenomena. In a first time, a self-consistent method based on a cylindrical geometry (SCMcyl) is used as a modelling approach for conduction transfers. Then, a modelling approach developed by Bankvall and based on an equivalent fibre radius value is used for radiation transfers. So, by coupling these two approaches, it is possible to obtain an equivalent thermal conductivity of fibrous materials as a function of density. Finally, this method is validated by comparison with experimental data.
Micro-Macro Modelling Approach of Vegetal Wools Thermal Conductivity
Construction Technologies and Architecture ; 1 ; 421-427
2022-01-06
7 pages
Article (Journal)
Electronic Resource
English
Study on the Thermal Degradation of Flame Retardant Wools
British Library Online Contents | 2003
|Study on the Thermal Degradation of Flame Retardant Wools
Online Contents | 2003
|TIBKAT | 2009
|Mechanical properties of vegetal yarn: Statistical approach
British Library Online Contents | 2016
|