A platform for research: civil engineering, architecture and urbanism
Retrofit of Masonry Buildings through Seismic Dampers
After the recent earthquakes occurred in some cities in Iran, such as Bam and Kermanshah, the engineering community was forced to pay special attention to the seismic vulnerability of traditional structures. Unreinforced masonry walls exhibit poor seismic performance under moderate and high seismic demand, due to the rapid degradation of stiffness. The development of effective techniques for the strengthening of these walls is an urgent need. The Base Isolation System (BIS) provides solutions to mitigate seismic hazard [1]. In this work, the seismic vulnerability of heritage masonry walls is assessed by conducting extensive numerical studies on both unreinforced (fixed-base) and reinforced (Base Isolation System) masonry walls. In this manner, modeling and analysis are conducted using standard finite element software, ABAQUS 6.13, and results of fixed-base masonry wall and similar base-isolated walls retrofitted with laminated rubber bearings are compared. Nonlinear time history analyses (using the actual Bam earthquake), which enable description of the pre-peak and post-peak behavior of walls, have been used to describe the behavior of structures.Finally, comparison of the failure modes between unreinforced and reinforced masonry walls reveals efficiency of using the rubber bearing isolation (passive control vibration devices) for a reduction in acceleration and an increase in the structural resistance to earthquake excitations [2].
Retrofit of Masonry Buildings through Seismic Dampers
After the recent earthquakes occurred in some cities in Iran, such as Bam and Kermanshah, the engineering community was forced to pay special attention to the seismic vulnerability of traditional structures. Unreinforced masonry walls exhibit poor seismic performance under moderate and high seismic demand, due to the rapid degradation of stiffness. The development of effective techniques for the strengthening of these walls is an urgent need. The Base Isolation System (BIS) provides solutions to mitigate seismic hazard [1]. In this work, the seismic vulnerability of heritage masonry walls is assessed by conducting extensive numerical studies on both unreinforced (fixed-base) and reinforced (Base Isolation System) masonry walls. In this manner, modeling and analysis are conducted using standard finite element software, ABAQUS 6.13, and results of fixed-base masonry wall and similar base-isolated walls retrofitted with laminated rubber bearings are compared. Nonlinear time history analyses (using the actual Bam earthquake), which enable description of the pre-peak and post-peak behavior of walls, have been used to describe the behavior of structures.Finally, comparison of the failure modes between unreinforced and reinforced masonry walls reveals efficiency of using the rubber bearing isolation (passive control vibration devices) for a reduction in acceleration and an increase in the structural resistance to earthquake excitations [2].
Retrofit of Masonry Buildings through Seismic Dampers
Key Engineering Materials ; 817 ; 293-300
2019-08-16
8 pages
Article (Journal)
Electronic Resource
English
Retrofit of Masonry Buildings through Seismic Dampers
British Library Conference Proceedings | 2019
|Seismic Retrofit of Unreinforced Masonry Buildings
British Library Conference Proceedings | 1996
|LAMINATED STEEL DAMPERS FOR SEISMIC RETROFIT OF EXISTING OLD BUILDINGS
European Patent Office | 2024