A platform for research: civil engineering, architecture and urbanism
Flexural and Shear Capacity Evaluation of Reinforced Ultra-High Strength Concrete Members with Steel Rebars
High-strength concrete is widely used in construction field. The growth has been possible as a result of recent developments in material technology and a demand for high-strength concrete. High-strength concrete has different mechanical properties from normal-strength, as many researches mentioned about. However, the existing equations and procedures for prediction of ultra-high strength concrete are based on tests using normal-strength concrete, yet. In this study, experiments on ultra-high-strength steel fiber reinforced concrete beams with 2% volume fraction of steel fiber and 200MPa of compressive strength have been conducted. Test was conducted by two point loading with 2,000kN actuator for slender test specimen which have varied shear-span to depth ratio. Using test results with several assumptions, an empirical equation for flexural strength and shear strength of ultra-high-strength steel fiber reinforced concrete beams have been proposed.
Flexural and Shear Capacity Evaluation of Reinforced Ultra-High Strength Concrete Members with Steel Rebars
High-strength concrete is widely used in construction field. The growth has been possible as a result of recent developments in material technology and a demand for high-strength concrete. High-strength concrete has different mechanical properties from normal-strength, as many researches mentioned about. However, the existing equations and procedures for prediction of ultra-high strength concrete are based on tests using normal-strength concrete, yet. In this study, experiments on ultra-high-strength steel fiber reinforced concrete beams with 2% volume fraction of steel fiber and 200MPa of compressive strength have been conducted. Test was conducted by two point loading with 2,000kN actuator for slender test specimen which have varied shear-span to depth ratio. Using test results with several assumptions, an empirical equation for flexural strength and shear strength of ultra-high-strength steel fiber reinforced concrete beams have been proposed.
Flexural and Shear Capacity Evaluation of Reinforced Ultra-High Strength Concrete Members with Steel Rebars
Key Engineering Materials ; 577-578 ; 17-20
2013-09-23
4 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2014
|British Library Conference Proceedings | 2014
|