A platform for research: civil engineering, architecture and urbanism
Analysis on Deep Excavation in Soft Soil Located on Sloped Bedrock
Deep excavations in soft-clay layer on sloped bedrock often leads to lateral displacement on retaining structures and uneven settlement due to unbalanced pressure generated from excavation. A construction project for which an excavation was complete in soft clay layer on sloped bedrock in Taipei City was adopted in the study. It is learned from the observation logs of the studied case that a significant difference exists in the lateral displacement of diaphragm wall and settlement between up and down-slope sides of sloped bedrock. Deep excavation is in fact profoundly complicated interaction between excavation strutting and soil. In general practice, the design of excavation is frequently simplified as a 2D strain behavior. However, the actual excavation on sloped bedrock is quite different from 1D or 2D simulation in a symmetric manner. Therefore, 2D finite element analysis program, PLAXIS, is introduced for the analysis on the behaviors of soil clay layer on sloped bedrock in excavation. The result is compared with onsite observation data, including displacement of retaining wall, settlement, axial loads of struts and others. The result of retaining wall displacement analysis is found consistent with the trend derived from onsite observation, which is possible for reference of similar engineering analyses and designs in the future.
Analysis on Deep Excavation in Soft Soil Located on Sloped Bedrock
Deep excavations in soft-clay layer on sloped bedrock often leads to lateral displacement on retaining structures and uneven settlement due to unbalanced pressure generated from excavation. A construction project for which an excavation was complete in soft clay layer on sloped bedrock in Taipei City was adopted in the study. It is learned from the observation logs of the studied case that a significant difference exists in the lateral displacement of diaphragm wall and settlement between up and down-slope sides of sloped bedrock. Deep excavation is in fact profoundly complicated interaction between excavation strutting and soil. In general practice, the design of excavation is frequently simplified as a 2D strain behavior. However, the actual excavation on sloped bedrock is quite different from 1D or 2D simulation in a symmetric manner. Therefore, 2D finite element analysis program, PLAXIS, is introduced for the analysis on the behaviors of soil clay layer on sloped bedrock in excavation. The result is compared with onsite observation data, including displacement of retaining wall, settlement, axial loads of struts and others. The result of retaining wall displacement analysis is found consistent with the trend derived from onsite observation, which is possible for reference of similar engineering analyses and designs in the future.
Analysis on Deep Excavation in Soft Soil Located on Sloped Bedrock
Applied Mechanics and Materials ; 170-173 ; 13-19
2012-05-14
7 pages
Article (Journal)
Electronic Resource
English
Analysis on Deep Excavation in Soft Soil Located on Sloped Bedrock
Tema Archive | 2012
|Analysis on Deep Excavation in Soft Soil Located on Sloped Bedrock
British Library Conference Proceedings | 2012
|Effect of Toe Excavation on a Deep Bedrock Landslide
Online Contents | 2005
|Deep Excavation Engineering in Soft Soil
British Library Conference Proceedings | 1998
|