A platform for research: civil engineering, architecture and urbanism
Heterocyclic organic corrosion inhibitors : principles and applications
Front Cover -- Heterocyclic Organic Corrosion Inhibitors -- Heterocyclic Organic Corrosion Inhibitors: Principles and Applications -- Copyright -- Contents -- Preface -- Acknowledgment -- List of abbreviations and symbols -- 1 -- Heterocyclic corrosion inhibitors -- 1.1 Introduction -- 1.2 Heterocyclic compounds -- 1.3 Important heterocyclic systems -- 1.3.1 Azoles -- 1.3.2 Indoles -- 1.3.3 Pyridines -- 1.3.4 Diazines -- 1.3.5 Quinolines -- 1.4 Nomenclature of heterocyclic compounds -- 1.4.1 Common or trivial names -- 1.4.2 Hantzsch-Widman nomenclature -- 1.4.3 The replacement nomenclature
1.5 Heterocyclic systems as corrosion inhibitors -- 1.5.1 Five-membered heterocycles -- 1.5.2 Six-membered heterocycles -- 1.5.3 Macrocyclic compounds -- 1.6 Effect of substituents on corrosion inhibition efficiency -- Suggested reading -- References -- 2 -- Experimental methods of inhibitor evaluation -- 2.1 Introduction -- 2.2 Gravimetric method -- 2.2.1 Effect of concentration -- 2.2.2 Effect of temperature and activation parameters -- 2.3 Adsorption parameters -- 2.3.1 Adsorption isotherms -- 2.3.2 Adsorption energy -- 2.4 Electrochemical methods -- 2.4.1 Open circuit potential vs. time
2.4.2 Electrochemical impedance spectroscopy -- 2.4.3 Potentiodynamic polarization -- 2.4.4 Electrochemical frequency modulation -- 2.4.5 Linear polarization resistance -- 2.5 Surface analytical techniques -- 2.5.1 Water contact angle -- 2.5.2 Scanning electron microscopy -- 2.5.3 Energy-dispersive X-ray spectroscopy -- 2.5.4 Atomic force microscopy -- 2.5.5 X-ray diffraction -- 2.5.6 Fourier transform infrared spectroscopy -- 2.5.7 X-ray photoelectron spectroscopy -- 2.5.8 Time-of-flight secondary ion mass spectrometry -- Suggested reading -- References
3 -- Computational methods of inhibitor evaluation -- 3.1 Introduction -- 3.2 Density functional theory -- 3.2.1 Theoretical basis -- 3.2.2 Functionals -- 3.2.3 Basis sets -- 3.3 DFT-based quantum chemical parameters -- 3.3.1 Frontier molecular orbitals -- 3.3.2 Frontier orbital energies -- 3.3.3 Electronegativity and the electronic chemical potential -- 3.3.4 Global hardness and softness -- 3.3.5 Electrophilicity and nucleophilicity indices -- 3.3.6 Fraction of electrons transferred -- 3.3.7 Energy change for donation and back donation of charges -- 3.3.8 Dipole moment -- 3.3.9 Proton affinity
3.3.10 Molecular electrostatic potential -- 3.3.11 Fukui indices -- 3.4 pKa analysis -- 3.5 Atomistic simulations -- 3.5.1 Ensemble -- 3.5.2 Molecular dynamics simulations -- 3.5.3 Monte Carlo simulations -- 3.5.4 Force fields -- 3.5.5 Boundary conditions -- 3.6 Application of atomistic simulation to corrosion inhibition studies -- 3.6.1 Total energy -- 3.6.2 Interaction energy -- 3.6.3 Binding energy -- 3.6.4 Solvation energy -- 3.6.5 Radial distribution function -- 3.6.6 Mean square displacement and diffusion coefficient -- Suggested reading -- References
4 -- Heterocyclic corrosion inhibitors for acid environments
Heterocyclic organic corrosion inhibitors : principles and applications
Front Cover -- Heterocyclic Organic Corrosion Inhibitors -- Heterocyclic Organic Corrosion Inhibitors: Principles and Applications -- Copyright -- Contents -- Preface -- Acknowledgment -- List of abbreviations and symbols -- 1 -- Heterocyclic corrosion inhibitors -- 1.1 Introduction -- 1.2 Heterocyclic compounds -- 1.3 Important heterocyclic systems -- 1.3.1 Azoles -- 1.3.2 Indoles -- 1.3.3 Pyridines -- 1.3.4 Diazines -- 1.3.5 Quinolines -- 1.4 Nomenclature of heterocyclic compounds -- 1.4.1 Common or trivial names -- 1.4.2 Hantzsch-Widman nomenclature -- 1.4.3 The replacement nomenclature
1.5 Heterocyclic systems as corrosion inhibitors -- 1.5.1 Five-membered heterocycles -- 1.5.2 Six-membered heterocycles -- 1.5.3 Macrocyclic compounds -- 1.6 Effect of substituents on corrosion inhibition efficiency -- Suggested reading -- References -- 2 -- Experimental methods of inhibitor evaluation -- 2.1 Introduction -- 2.2 Gravimetric method -- 2.2.1 Effect of concentration -- 2.2.2 Effect of temperature and activation parameters -- 2.3 Adsorption parameters -- 2.3.1 Adsorption isotherms -- 2.3.2 Adsorption energy -- 2.4 Electrochemical methods -- 2.4.1 Open circuit potential vs. time
2.4.2 Electrochemical impedance spectroscopy -- 2.4.3 Potentiodynamic polarization -- 2.4.4 Electrochemical frequency modulation -- 2.4.5 Linear polarization resistance -- 2.5 Surface analytical techniques -- 2.5.1 Water contact angle -- 2.5.2 Scanning electron microscopy -- 2.5.3 Energy-dispersive X-ray spectroscopy -- 2.5.4 Atomic force microscopy -- 2.5.5 X-ray diffraction -- 2.5.6 Fourier transform infrared spectroscopy -- 2.5.7 X-ray photoelectron spectroscopy -- 2.5.8 Time-of-flight secondary ion mass spectrometry -- Suggested reading -- References
3 -- Computational methods of inhibitor evaluation -- 3.1 Introduction -- 3.2 Density functional theory -- 3.2.1 Theoretical basis -- 3.2.2 Functionals -- 3.2.3 Basis sets -- 3.3 DFT-based quantum chemical parameters -- 3.3.1 Frontier molecular orbitals -- 3.3.2 Frontier orbital energies -- 3.3.3 Electronegativity and the electronic chemical potential -- 3.3.4 Global hardness and softness -- 3.3.5 Electrophilicity and nucleophilicity indices -- 3.3.6 Fraction of electrons transferred -- 3.3.7 Energy change for donation and back donation of charges -- 3.3.8 Dipole moment -- 3.3.9 Proton affinity
3.3.10 Molecular electrostatic potential -- 3.3.11 Fukui indices -- 3.4 pKa analysis -- 3.5 Atomistic simulations -- 3.5.1 Ensemble -- 3.5.2 Molecular dynamics simulations -- 3.5.3 Monte Carlo simulations -- 3.5.4 Force fields -- 3.5.5 Boundary conditions -- 3.6 Application of atomistic simulation to corrosion inhibition studies -- 3.6.1 Total energy -- 3.6.2 Interaction energy -- 3.6.3 Binding energy -- 3.6.4 Solvation energy -- 3.6.5 Radial distribution function -- 3.6.6 Mean square displacement and diffusion coefficient -- Suggested reading -- References
4 -- Heterocyclic corrosion inhibitors for acid environments
Heterocyclic organic corrosion inhibitors : principles and applications
Quraishi, Mumtaz A. (author) / Chauhan, Dheeraj S. / Saji, Viswanathan S.
2020
1 Online-Ressource (1 online resource)
Book
Electronic Resource
English
DDC:
620.1/1223
Insulating Organic Coatings by Electropolymerization of Heterocyclic Corrosion Inhibitors
British Library Online Contents | 1998
|Galvanic Corrosion Inhibition of Organic Corrosion Inhibitors
British Library Online Contents | 2017
|Corrosion inhibitors in concrete - Part I: The principles
Tema Archive | 1998
|