A platform for research: civil engineering, architecture and urbanism
Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques
Front Cover -- Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques -- Copyright Page -- Contents -- List of contributors -- About the Series editors -- 1 Modeling of metal forming: a review -- 1.1 Introduction -- 1.2 Modeling issues in various metal forming processes -- 1.2.1 Forging -- 1.2.2 Rolling -- 1.2.3 Wire drawing -- 1.2.4 Extrusion -- 1.2.5 Deep drawing -- 1.2.6 Bending -- 1.3 Various modeling techniques -- 1.3.1 Slab method -- 1.3.2 Slip-line field method -- 1.3.3 Visioplasticity -- 1.3.4 Upper bound method -- 1.3.5 Finite difference method
1.3.6 Finite element method -- 1.3.7 Meshless method -- 1.3.8 Molecular dynamics simulation -- 1.3.9 Soft computing -- 1.4 Inverse modeling -- 1.5 Modeling of microstructure and surface integrity -- 1.6 A note on multiscale modeling of metal forming -- 1.7 Challenging issues -- 1.8 Conclusion -- References -- 2 Finite element method modeling of hydraulic and thermal autofrettage processes -- 2.1 Introduction -- 2.1.1 Hydraulic autofrettage -- 2.1.2 Swage autofrettage -- 2.1.3 Explosive autofrettage -- 2.1.4 Thermal autofrettage -- 2.1.5 Rotational autofrettage
2.2 Numerical modeling of elastic-plastic problems -- 2.2.1 Yield criteria and hardening behavior of the material -- 2.2.1.1 The von Mises yield criterion -- 2.2.1.2 Tresca yield criterion -- 2.2.2 Approaches for numerical modeling of elastic-plastic problems -- 2.3 FEM formulation using updated Lagrangian method -- 2.3.1 Derivation of the weak form of the equilibrium equation -- 2.3.2 Formulation of elemental equations -- 2.3.3 Solution method -- 2.4 Typical results of FEM modeling of hydraulic and thermal autofrettage -- 2.4.1 Results of hydraulic autofrettage
2.4.1.1 Results for plane stress condition of hydraulic autofrettage -- 2.4.1.2 Results for plane strain end condition of hydraulic autofrettage -- 2.4.2 Results of thermal autofrettage -- 2.4.2.1 Results for plane stress end condition of thermal autofrettage -- 2.4.2.2 Results for open-ended condition of thermal autofrettage -- 2.5 Conclusion -- References -- 3 Mechanics of hydroforming -- 3.1 Introduction -- 3.2 Modeling of plastic deformation in tube hydroforming -- 3.2.1 Rotationally symmetrical tube expansion -- 3.2.2 Hydroforming of polygonal cross sections
3.2.3 Hydroforming of tube branches -- 3.3 Determination of forming limits in tube hydroforming -- 3.3.1 Necking and bursting -- 3.3.2 Wrinkling and buckling -- 3.4 Design of loading paths -- 3.5 Conclusion -- References -- 4 Electromagnetic pulse forming -- 4.1 Process classification -- 4.2 Process principle and major process variants -- 4.2.1 General setup and process principle -- 4.2.2 Major process variants -- 4.2.2.1 Electromagnetic pulse compression -- 4.2.2.2 Electromagnetic pulse expansion -- 4.2.2.3 Electromagnetic pulse forming of flat and preformed sheet metal
Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques
Front Cover -- Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques -- Copyright Page -- Contents -- List of contributors -- About the Series editors -- 1 Modeling of metal forming: a review -- 1.1 Introduction -- 1.2 Modeling issues in various metal forming processes -- 1.2.1 Forging -- 1.2.2 Rolling -- 1.2.3 Wire drawing -- 1.2.4 Extrusion -- 1.2.5 Deep drawing -- 1.2.6 Bending -- 1.3 Various modeling techniques -- 1.3.1 Slab method -- 1.3.2 Slip-line field method -- 1.3.3 Visioplasticity -- 1.3.4 Upper bound method -- 1.3.5 Finite difference method
1.3.6 Finite element method -- 1.3.7 Meshless method -- 1.3.8 Molecular dynamics simulation -- 1.3.9 Soft computing -- 1.4 Inverse modeling -- 1.5 Modeling of microstructure and surface integrity -- 1.6 A note on multiscale modeling of metal forming -- 1.7 Challenging issues -- 1.8 Conclusion -- References -- 2 Finite element method modeling of hydraulic and thermal autofrettage processes -- 2.1 Introduction -- 2.1.1 Hydraulic autofrettage -- 2.1.2 Swage autofrettage -- 2.1.3 Explosive autofrettage -- 2.1.4 Thermal autofrettage -- 2.1.5 Rotational autofrettage
2.2 Numerical modeling of elastic-plastic problems -- 2.2.1 Yield criteria and hardening behavior of the material -- 2.2.1.1 The von Mises yield criterion -- 2.2.1.2 Tresca yield criterion -- 2.2.2 Approaches for numerical modeling of elastic-plastic problems -- 2.3 FEM formulation using updated Lagrangian method -- 2.3.1 Derivation of the weak form of the equilibrium equation -- 2.3.2 Formulation of elemental equations -- 2.3.3 Solution method -- 2.4 Typical results of FEM modeling of hydraulic and thermal autofrettage -- 2.4.1 Results of hydraulic autofrettage
2.4.1.1 Results for plane stress condition of hydraulic autofrettage -- 2.4.1.2 Results for plane strain end condition of hydraulic autofrettage -- 2.4.2 Results of thermal autofrettage -- 2.4.2.1 Results for plane stress end condition of thermal autofrettage -- 2.4.2.2 Results for open-ended condition of thermal autofrettage -- 2.5 Conclusion -- References -- 3 Mechanics of hydroforming -- 3.1 Introduction -- 3.2 Modeling of plastic deformation in tube hydroforming -- 3.2.1 Rotationally symmetrical tube expansion -- 3.2.2 Hydroforming of polygonal cross sections
3.2.3 Hydroforming of tube branches -- 3.3 Determination of forming limits in tube hydroforming -- 3.3.1 Necking and bursting -- 3.3.2 Wrinkling and buckling -- 3.4 Design of loading paths -- 3.5 Conclusion -- References -- 4 Electromagnetic pulse forming -- 4.1 Process classification -- 4.2 Process principle and major process variants -- 4.2.1 General setup and process principle -- 4.2.2 Major process variants -- 4.2.2.1 Electromagnetic pulse compression -- 4.2.2.2 Electromagnetic pulse expansion -- 4.2.2.3 Electromagnetic pulse forming of flat and preformed sheet metal
Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques
Silberschmidt, Vadim V. (editor)
2020
1 Online-Ressource
Book
Electronic Resource
English
DDC:
620.1/1292
Modern materials and manufacturing techniques
TIBKAT | 2024
|Modern Techniques for Characterizing Magnetic Materials
British Library Online Contents | 2005
Modern applied fracture mechanics
TIBKAT | 2022
|Modern worship - Classic materials with modern techniques in an Italian church.
Online Contents | 2001