A platform for research: civil engineering, architecture and urbanism
Conjugated polymer nanostructures for energy conversion and storage applications
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgment -- Part I Design and Characterization of Conjugated Polymer Nanostructures -- Chapter 1 Fundamentals of Conjugated Polymer Nanostructures -- 1.1 Introduction -- 1.2 Electronic and Electrical Properties -- 1.2.1 Conductive Mechanism -- 1.2.1.1 Inherent Molecular Structure -- 1.2.1.2 Doping and Band Structure Evolution -- 1.2.2 Charge Carrier Transport Models -- 1.2.3 Temperature Dependence -- 1.3 Electrochemical Properties -- 1.3.1 Reversible Oxidation/Reduction Process and Charge Storage Behavior
1.3.2 Swelling and De-swelling Behavior -- 1.3.3 Electrochromism -- 1.4 Optical Properties -- 1.4.1 Band Gap of Conjugated Polymers -- 1.4.2 Absorption and Emission -- 1.4.3 Coherent Exciton Diffusion and Energy Transfer -- 1.5 Unique Properties at the Nanoscale -- 1.6 Conclusion -- References -- Chapter 2 Chemical Synthesis of Conducting Polymers Nanostructures -- 2.1 Introduction -- 2.2 Template-Based Synthesis -- 2.2.1 Hard-Template Method -- 2.2.2 Soft-Template Method -- 2.3 Template-Free Synthesis -- 2.3.1 Self Assembly via Interfacial Polymerization
2.3.2 Post-synthetic Self-assembly Process -- 2.3.3 Wet Spinning Process -- 2.3.4 Melt Spinning -- 2.3.5 Dry Spinning -- 2.3.6 Electrospinning -- 2.3.7 Seeding Approach -- 2.3.8 Whisker Method of Polymer Synthesis -- 2.3.9 Mixed-Solvent Technique -- 2.3.10 Reprecipitation Technique -- 2.4 Conducting Polymer Hydrogels -- 2.5 Nanolithography -- 2.5.1 Dip-Pen Nanolithography (DPN) -- 2.5.2 Nanoimprint Lithography -- 2.6 Conclusion and Future Prospects -- References -- Chapter 3 Template-Free Synthesis of Nanostructured Conjugated Polymer Films -- 3.1 Introduction -- 3.2 Template-Free Synthesis
3.2.1 Electrochemical Polymerization -- 3.2.2 Electrospinning -- 3.2.3 Vapor Phase Polymerization -- 3.2.4 Plasma Polymerization -- 3.3 Conclusions -- References -- Chapter 4 Use of High Energy Radiation for Synthesis and Kinetic Study of Conjugated Polymers -- 4.1 Recent Advancements Toward Facile Preparation of Processable CPs -- 4.2 Preface to Radiation Induced Oxidative Polymerization of CPs Nanostructures in Aqueous Solutions -- 4.2.1 Studying Kinetic Mechanism of HO˙-Induced EDOT Polymerization in Aqueous Solution
4.2.2 Gamma-Radiation Induced Oxidative Polymerization of EDOT in Aerated Aqueous Solutions at Neutral pH -- 4.2.3 Effect of Oxidizing Species on Gamma-Radiation-Induced Synthesis of PEDOT -- 4.2.4 Extension of the Radiolytic Procedure to the Synthesis of Polypyrrole (PPy) Nanostructures -- 4.2.5 Effect of pH on the Polymerization of EDOT Monomers -- 4.3 Radiation-Induced Synthesis of CPs Nanostructures by Reduction-Polymerization Route -- 4.4 Radiation-Induced Synthesis of CPs/Metal Nanocomposites -- 4.5 Toward Radiation-Induced Synthesis of CPs Nanostructures in Organic Solvents
Conjugated polymer nanostructures for energy conversion and storage applications
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgment -- Part I Design and Characterization of Conjugated Polymer Nanostructures -- Chapter 1 Fundamentals of Conjugated Polymer Nanostructures -- 1.1 Introduction -- 1.2 Electronic and Electrical Properties -- 1.2.1 Conductive Mechanism -- 1.2.1.1 Inherent Molecular Structure -- 1.2.1.2 Doping and Band Structure Evolution -- 1.2.2 Charge Carrier Transport Models -- 1.2.3 Temperature Dependence -- 1.3 Electrochemical Properties -- 1.3.1 Reversible Oxidation/Reduction Process and Charge Storage Behavior
1.3.2 Swelling and De-swelling Behavior -- 1.3.3 Electrochromism -- 1.4 Optical Properties -- 1.4.1 Band Gap of Conjugated Polymers -- 1.4.2 Absorption and Emission -- 1.4.3 Coherent Exciton Diffusion and Energy Transfer -- 1.5 Unique Properties at the Nanoscale -- 1.6 Conclusion -- References -- Chapter 2 Chemical Synthesis of Conducting Polymers Nanostructures -- 2.1 Introduction -- 2.2 Template-Based Synthesis -- 2.2.1 Hard-Template Method -- 2.2.2 Soft-Template Method -- 2.3 Template-Free Synthesis -- 2.3.1 Self Assembly via Interfacial Polymerization
2.3.2 Post-synthetic Self-assembly Process -- 2.3.3 Wet Spinning Process -- 2.3.4 Melt Spinning -- 2.3.5 Dry Spinning -- 2.3.6 Electrospinning -- 2.3.7 Seeding Approach -- 2.3.8 Whisker Method of Polymer Synthesis -- 2.3.9 Mixed-Solvent Technique -- 2.3.10 Reprecipitation Technique -- 2.4 Conducting Polymer Hydrogels -- 2.5 Nanolithography -- 2.5.1 Dip-Pen Nanolithography (DPN) -- 2.5.2 Nanoimprint Lithography -- 2.6 Conclusion and Future Prospects -- References -- Chapter 3 Template-Free Synthesis of Nanostructured Conjugated Polymer Films -- 3.1 Introduction -- 3.2 Template-Free Synthesis
3.2.1 Electrochemical Polymerization -- 3.2.2 Electrospinning -- 3.2.3 Vapor Phase Polymerization -- 3.2.4 Plasma Polymerization -- 3.3 Conclusions -- References -- Chapter 4 Use of High Energy Radiation for Synthesis and Kinetic Study of Conjugated Polymers -- 4.1 Recent Advancements Toward Facile Preparation of Processable CPs -- 4.2 Preface to Radiation Induced Oxidative Polymerization of CPs Nanostructures in Aqueous Solutions -- 4.2.1 Studying Kinetic Mechanism of HO˙-Induced EDOT Polymerization in Aqueous Solution
4.2.2 Gamma-Radiation Induced Oxidative Polymerization of EDOT in Aerated Aqueous Solutions at Neutral pH -- 4.2.3 Effect of Oxidizing Species on Gamma-Radiation-Induced Synthesis of PEDOT -- 4.2.4 Extension of the Radiolytic Procedure to the Synthesis of Polypyrrole (PPy) Nanostructures -- 4.2.5 Effect of pH on the Polymerization of EDOT Monomers -- 4.3 Radiation-Induced Synthesis of CPs Nanostructures by Reduction-Polymerization Route -- 4.4 Radiation-Induced Synthesis of CPs/Metal Nanocomposites -- 4.5 Toward Radiation-Induced Synthesis of CPs Nanostructures in Organic Solvents
Conjugated polymer nanostructures for energy conversion and storage applications
2021
1 Online-Ressource (531 p)
Description based upon print version of record
4.6 The Electrical and Physical Properties of Radiosynthesized CPs
Includes bibliographical references and index
Book
Electronic Resource
English
DDC:
620.1/15
Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion
British Library Online Contents | 2000
|Hybrid Nanostructures for Energy Storage Applications
British Library Online Contents | 2012
|Graphene-based materials with tailored nanostructures for energy conversion and storage
British Library Online Contents | 2016
|Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion
British Library Online Contents | 2018
|Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion
British Library Online Contents | 2018
|