A platform for research: civil engineering, architecture and urbanism
Effect of COVID‐19 lockdown on ambient air quality
AbstractThe aim of this study was to evaluate the impact of pandemic‐related lockdown on Turkey's air quality throughout time and space. For this purpose, statistical techniques were used to assess daily particulate matter (PM10), sulfur dioxide (SO2), nitrogen oxides and nitrogen dioxide (NOx and NO2), ozone (O3), and carbon monoxide (CO). The study's findings showed that, while the lockdown improved air quality in terms of air pollutant emissions, the most notable reduction was in NO2 and NOx emissions. When comparing the months prior to the pandemic (November 2019 to January 2020) with the months during the pandemic (November 2020 to January 2021), the declines in NO2 were 20%, 3%, and 0.5%, respectively. NOx emissions decreased by an average of 19% and 5% in November and December, respectively, and increased by an average of 16% in January during the pandemic. When the data for the 33 days of lockdown were compared to the data for the same 33 days the previous year, significant differences were determined at several Clean Air Centers, which were two for PM10, two for SO2, seven for NOx, four for NO2, two for CO, and three for O3, respectively. In this study, pollutant concentrations were found in the following ranges from November 2019 to January 2021: PM10: 3–208 µg m–3, SO2: 1–56 µg m–3, NOx: 6–600 µg m–3, NO2: 4–155 µg m–3, CO: 1–3921 µg m–3, and O3: 2–119 µg m–3. There were days that exceeded the limit values for PM10.
Effect of COVID‐19 lockdown on ambient air quality
AbstractThe aim of this study was to evaluate the impact of pandemic‐related lockdown on Turkey's air quality throughout time and space. For this purpose, statistical techniques were used to assess daily particulate matter (PM10), sulfur dioxide (SO2), nitrogen oxides and nitrogen dioxide (NOx and NO2), ozone (O3), and carbon monoxide (CO). The study's findings showed that, while the lockdown improved air quality in terms of air pollutant emissions, the most notable reduction was in NO2 and NOx emissions. When comparing the months prior to the pandemic (November 2019 to January 2020) with the months during the pandemic (November 2020 to January 2021), the declines in NO2 were 20%, 3%, and 0.5%, respectively. NOx emissions decreased by an average of 19% and 5% in November and December, respectively, and increased by an average of 16% in January during the pandemic. When the data for the 33 days of lockdown were compared to the data for the same 33 days the previous year, significant differences were determined at several Clean Air Centers, which were two for PM10, two for SO2, seven for NOx, four for NO2, two for CO, and three for O3, respectively. In this study, pollutant concentrations were found in the following ranges from November 2019 to January 2021: PM10: 3–208 µg m–3, SO2: 1–56 µg m–3, NOx: 6–600 µg m–3, NO2: 4–155 µg m–3, CO: 1–3921 µg m–3, and O3: 2–119 µg m–3. There were days that exceeded the limit values for PM10.
Effect of COVID‐19 lockdown on ambient air quality
CLEAN Soil Air Water
Çalik, Özge Nur (author) / Çetin Doğruparmak, Şenay (author)
2024-06-01
Article (Journal)
Electronic Resource
English
Effect of COVID‐19 lockdown on ambient air quality
Wiley | 2024
|Impact of Lockdown on Ambient Air Quality in Nagpur Due to COVID-19 Pandemic
Springer Verlag | 2021
|Indicative Lake Water Quality Assessment Using Remote Sensing Images-Effect of COVID-19 Lockdown
DOAJ | 2020
|