A platform for research: civil engineering, architecture and urbanism
Entropy‐Based Assessment of Biodiversity, With Application to Ants' Nests Data
ABSTRACTThe present work takes an innovative point of view in the study of a marked point pattern dataset of two ants' species, over an irregular region with a spatial covariate. The approach, based on entropy measures, brings new insights to the interpretation of the behavior of such ants' nesting habits, which can be exploited in the general area of biodiversity evaluation. We make proper use of descriptive entropy measures and inferential approaches, performing a comparative study of their uncertainty and interpretability in the context of biodiversity. For the first time in the study of these ants' nests data, all the available information is fully exploited, and interpretation guidelines are given for assessing both the observed and the latent biodiversity of the system, with a simultaneous consideration of spatial structures, covariate and interpoint interaction effects. Computations are supported by the new release of our R package SpatEntropy.
Entropy‐Based Assessment of Biodiversity, With Application to Ants' Nests Data
ABSTRACTThe present work takes an innovative point of view in the study of a marked point pattern dataset of two ants' species, over an irregular region with a spatial covariate. The approach, based on entropy measures, brings new insights to the interpretation of the behavior of such ants' nesting habits, which can be exploited in the general area of biodiversity evaluation. We make proper use of descriptive entropy measures and inferential approaches, performing a comparative study of their uncertainty and interpretability in the context of biodiversity. For the first time in the study of these ants' nests data, all the available information is fully exploited, and interpretation guidelines are given for assessing both the observed and the latent biodiversity of the system, with a simultaneous consideration of spatial structures, covariate and interpoint interaction effects. Computations are supported by the new release of our R package SpatEntropy.
Entropy‐Based Assessment of Biodiversity, With Application to Ants' Nests Data
Environmetrics
Altieri, L. (author) / Cocchi, D. (author) / Ventrucci, M. (author)
Environmetrics ; 36
2025-01-01
Article (Journal)
Electronic Resource
English