A platform for research: civil engineering, architecture and urbanism
Quasi‐Homoepitaxial Growth of Highly Strained Alkali‐Metal Ultrathin Films on Kagome Superconductors
AbstractApplying lattice strain to thin films, a critical factor to tailor their properties such as stabilizing a structural phase unstable at ambient pressure, generally necessitates heteroepitaxial growth to control the lattice mismatch with substrate. Therefore, while homoepitaxy, the growth of thin film on a substrate made of the same material, is a useful method to fabricate high‐quality thin films, its application to studying strain‐induced structural phases is limited. Contrary to this general belief, here the quasi‐homoepitaxial growth of Cs and Rb thin films is reported with substantial in‐plane compressive strain. This is achieved by utilizing the alkali‐metal layer existing in bulk crystal of kagome metals AV3Sb5 (A = Cs and Rb) as a structural template. The angle‐resolved photoemission spectroscopy measurements reveal the formation of metallic quantum well states and notable thickness‐dependent quasiparticle lifetime. Comparison with density functional theory calculations suggests that the obtained thin films crystalize in the face‐centered cubic structure, which is typically stable only under high pressure in bulk crystals. These findings provide a useful approach for synthesizing highly strained thin films by quasi‐homoepitaxy, and pave the way for investigating many‐body interactions in Fermi liquids with tunable dimensionality.
Quasi‐Homoepitaxial Growth of Highly Strained Alkali‐Metal Ultrathin Films on Kagome Superconductors
AbstractApplying lattice strain to thin films, a critical factor to tailor their properties such as stabilizing a structural phase unstable at ambient pressure, generally necessitates heteroepitaxial growth to control the lattice mismatch with substrate. Therefore, while homoepitaxy, the growth of thin film on a substrate made of the same material, is a useful method to fabricate high‐quality thin films, its application to studying strain‐induced structural phases is limited. Contrary to this general belief, here the quasi‐homoepitaxial growth of Cs and Rb thin films is reported with substantial in‐plane compressive strain. This is achieved by utilizing the alkali‐metal layer existing in bulk crystal of kagome metals AV3Sb5 (A = Cs and Rb) as a structural template. The angle‐resolved photoemission spectroscopy measurements reveal the formation of metallic quantum well states and notable thickness‐dependent quasiparticle lifetime. Comparison with density functional theory calculations suggests that the obtained thin films crystalize in the face‐centered cubic structure, which is typically stable only under high pressure in bulk crystals. These findings provide a useful approach for synthesizing highly strained thin films by quasi‐homoepitaxy, and pave the way for investigating many‐body interactions in Fermi liquids with tunable dimensionality.
Quasi‐Homoepitaxial Growth of Highly Strained Alkali‐Metal Ultrathin Films on Kagome Superconductors
Advanced Science
Kato, Takemi (author) / Nakayama, Kosuke (author) / Li, Yongkai (author) / Wang, Zhiwei (author) / Sugawara, Katsuaki (author) / Tanaka, Kiyohisa (author) / Takahashi, Takashi (author) / Yao, Yugui (author) / Sato, Takafumi (author)
Advanced Science ; 11
2024-08-01
Article (Journal)
Electronic Resource
English
Quasi‐Homoepitaxial Growth of Highly Strained Alkali‐Metal Ultrathin Films on Kagome Superconductors
Wiley | 2024
|An XPD and LEED study of highly strained ultrathin Ni films on Pd(1 0 0)
British Library Online Contents | 2003
|Homoepitaxial growth of ZnO films via low-temperature liquid-phase epitaxy
British Library Online Contents | 2007
|Homoepitaxial growth of ZnO films on ZnO ( Formula Not Shown ) substrates
British Library Online Contents | 2005
|Direction-Dependent Homoepitaxial Growth of GaN Nanowires
British Library Online Contents | 2006
|