A platform for research: civil engineering, architecture and urbanism
Impacts of individual tree species on carbon dynamics in a moist tropical forest environment
In the moist tropical forest biome, which cycles carbon (C) rapidly and stores huge amounts of C, the impacts of individual species on C balances are not well known. In one of the earliest replicated experimental sites for investigating growth of native tropical trees, we examined traits of tree species in relation to their effects on forest C balances, mechanisms of influence, and consequences for C sequestration. The monodominant stands, established in abandoned pasture in 1988 at La Selva Biological Station, Costa Rica, contained five species in a complete randomized block design. Native species were:Hieronyma alchorneoides,Pentaclethra macroloba,Virola koschnyi, andVochysia guatemalensis. The exotic species wasPinus patula. By 16 years, the lack of differences among species in some attributes suggested strong abiotic control in this environment, where conditions are very favorable for growth. These attributes included aboveground net primary productivity (ANPP), averaging 11.7 Mg C·ha−1·yr−1across species, and soil organic C (0–100 cm, 167 Mg C/ha). Other traits differed significantly, however, indicating some degree of biological control. InVochysiaplots, both aboveground biomass of 99 Mg C/ha, and belowground biomass of 20 Mg C/ha were 1.8 times that ofVirola(P= 0.02 and 0.03, respectively). Differences among species in overstory biomass were not compensated by understory vegetation. Belowground NPP of 4.6 Mg C·ha−1·yr−1inHieronymawas 2.4 times that ofPinus(P< 0.01). Partitioning of NPP to belowground components inHieronymawas more than double that ofPinus(P= 0.03). The canopy turnover rate inHieronymawas 42% faster than that ofVirola(P< 0.01). Carbon sequestration, highest inVochysia(7.4 Mg C·ha−1·yr−1,P= 0.02), averaged 5.2 Mg C·ha−1·yr−1, close to the annual per capita fossil fuel use in the United States of 5.3 Mg C. Our results indicated that differences in species effects on forest C balances were related primarily to differences in growth rates, partitioning of C among biomass components, tissue turnover rates, and tissue chemistry. Inclusion of those biological attributes may be critical for robust modeling of C cycling across the moist tropical forest biome.
Impacts of individual tree species on carbon dynamics in a moist tropical forest environment
In the moist tropical forest biome, which cycles carbon (C) rapidly and stores huge amounts of C, the impacts of individual species on C balances are not well known. In one of the earliest replicated experimental sites for investigating growth of native tropical trees, we examined traits of tree species in relation to their effects on forest C balances, mechanisms of influence, and consequences for C sequestration. The monodominant stands, established in abandoned pasture in 1988 at La Selva Biological Station, Costa Rica, contained five species in a complete randomized block design. Native species were:Hieronyma alchorneoides,Pentaclethra macroloba,Virola koschnyi, andVochysia guatemalensis. The exotic species wasPinus patula. By 16 years, the lack of differences among species in some attributes suggested strong abiotic control in this environment, where conditions are very favorable for growth. These attributes included aboveground net primary productivity (ANPP), averaging 11.7 Mg C·ha−1·yr−1across species, and soil organic C (0–100 cm, 167 Mg C/ha). Other traits differed significantly, however, indicating some degree of biological control. InVochysiaplots, both aboveground biomass of 99 Mg C/ha, and belowground biomass of 20 Mg C/ha were 1.8 times that ofVirola(P= 0.02 and 0.03, respectively). Differences among species in overstory biomass were not compensated by understory vegetation. Belowground NPP of 4.6 Mg C·ha−1·yr−1inHieronymawas 2.4 times that ofPinus(P< 0.01). Partitioning of NPP to belowground components inHieronymawas more than double that ofPinus(P= 0.03). The canopy turnover rate inHieronymawas 42% faster than that ofVirola(P< 0.01). Carbon sequestration, highest inVochysia(7.4 Mg C·ha−1·yr−1,P= 0.02), averaged 5.2 Mg C·ha−1·yr−1, close to the annual per capita fossil fuel use in the United States of 5.3 Mg C. Our results indicated that differences in species effects on forest C balances were related primarily to differences in growth rates, partitioning of C among biomass components, tissue turnover rates, and tissue chemistry. Inclusion of those biological attributes may be critical for robust modeling of C cycling across the moist tropical forest biome.
Impacts of individual tree species on carbon dynamics in a moist tropical forest environment
Ecological Applications
Russell, Ann E. (author) / Raich, James W. (author) / Arrieta, Ricardo Bedoya (author) / Valverde-Barrantes, Oscar (author) / González, Eugenio (author)
Ecological Applications ; 20 ; 1087-1100
2010-06-01
Article (Journal)
Electronic Resource
English
Changes in Sensitivity of Tree-Ring Widths to Climate in a Tropical Moist Forest Tree in Bangladesh
DOAJ | 2018
|The management of tropical moist forest lands : ecological guidelines
Catalogue agriculture | 1991
|Identifying forest-obligate birds in tropical moist cloud forest of Andean Ecuador
British Library Online Contents | 2008
|