A platform for research: civil engineering, architecture and urbanism
Versatile Liquid Metal/Alginate Composite Fibers with Enhanced Flame Retardancy and Triboelectric Performance for Smart Wearable Textiles
AbstractLiquid metal (LM) shows the superiority in smart wearable devices due to its biocompatibility and electromagnetic interference (EMI) shielding. However, LM based fibers that can achieve multifunctional integrated applications with biodegradability remain a daunting challenge. Herein, versatile LM based fibers are fabricated first by sonication in alginate solution to obtain LM micro/nano droplets and then wet‐spinning into LM/alginate composite fibers. By mixing with high‐concentration alginate solution (4–6 wt.%), the LM micro/nano droplets stability (colloidal stability for > 30 d and chemical stability for > 45 d) are not only improved, but also facilitate its spinning into fibers through bimetallic ions (e.g., Ga3+ and Ca2+) chelation strategy. These resultant fibers can be woven into smart textiles with excellent flexibility, air permeability, water/salt resistance, and high temperature tolerance (−196–150 °C). In addition, inhibition of smoldering result from the LM droplets and bimetallic ions is achieved to enhance flame retardancy. Furthermore, these fibers combine the exceptional properties of LM droplets (e.g., photo‐thermal effect and EMI shielding) and alginate fibers (e.g., biocompatibility and biodegradability), applicable in wearable heating devices, wireless communication, and triboelectric nanogenerator, making it a promising candidate for flexible smart textiles.
Versatile Liquid Metal/Alginate Composite Fibers with Enhanced Flame Retardancy and Triboelectric Performance for Smart Wearable Textiles
AbstractLiquid metal (LM) shows the superiority in smart wearable devices due to its biocompatibility and electromagnetic interference (EMI) shielding. However, LM based fibers that can achieve multifunctional integrated applications with biodegradability remain a daunting challenge. Herein, versatile LM based fibers are fabricated first by sonication in alginate solution to obtain LM micro/nano droplets and then wet‐spinning into LM/alginate composite fibers. By mixing with high‐concentration alginate solution (4–6 wt.%), the LM micro/nano droplets stability (colloidal stability for > 30 d and chemical stability for > 45 d) are not only improved, but also facilitate its spinning into fibers through bimetallic ions (e.g., Ga3+ and Ca2+) chelation strategy. These resultant fibers can be woven into smart textiles with excellent flexibility, air permeability, water/salt resistance, and high temperature tolerance (−196–150 °C). In addition, inhibition of smoldering result from the LM droplets and bimetallic ions is achieved to enhance flame retardancy. Furthermore, these fibers combine the exceptional properties of LM droplets (e.g., photo‐thermal effect and EMI shielding) and alginate fibers (e.g., biocompatibility and biodegradability), applicable in wearable heating devices, wireless communication, and triboelectric nanogenerator, making it a promising candidate for flexible smart textiles.
Versatile Liquid Metal/Alginate Composite Fibers with Enhanced Flame Retardancy and Triboelectric Performance for Smart Wearable Textiles
Advanced Science
Qi, Xiulei (author) / Liu, Yide (author) / Yu, Lei (author) / Yu, Zhenchuan (author) / Chen, Long (author) / Li, Xiankai (author) / Xia, Yanzhi (author)
Advanced Science ; 10
2023-10-01
Article (Journal)
Electronic Resource
English
Smart Textiles: Wearable Electronic Systems
British Library Online Contents | 2003
|Interior/exterior architectural panel using regenerated fibers and having enhanced flame retardancy
European Patent Office | 2024
|