A platform for research: civil engineering, architecture and urbanism
“Inverted” Cyclic(Alkyl)(Amino)Carbene (CAAC) Ruthenium Complex Catalyzed Isomerization Metathesis (ISOMET) of Long Chain Olefins to Propylene at Low Ethylene Pressure
AbstractIsomerization Metathesis (ISOMET) reaction is an emerging tool for “open loop” chemical recycling of polyethylene to propylene. Novel, latent N‐Alkyl substituted Cyclic(Alkyl)(Amino)Carbene (CAAC)–ruthenium catalysts (5a‐Ru, 3b‐Ru – 6c‐Ru) are developed rendering “inverted” chemical structure while showing enhanced ISOMET activity in combination with (RuHCl)(CO)(PPh3)3 (RuH) double bond isomerization co‐catalyst. Systematic investigations reveal that the steric hindrance of the substituents on nitrogen and carbon atom adjacent to carbene moiety in the CAAC ligand have significantly improved the catalytic activity and robustness. In contrast to the NHC‐Ru and CAAC‐Ru catalyst systems known so far, these systems show higher isomerization metathesis (ISOMET) activity (TON: 7400) on the model compound 1‐octadecene at as low as 3.0 bar optimized pressure, using technical grade (3.0) ethylene. The propylene content formed in the gas phase can reach up to 20% by volume.
“Inverted” Cyclic(Alkyl)(Amino)Carbene (CAAC) Ruthenium Complex Catalyzed Isomerization Metathesis (ISOMET) of Long Chain Olefins to Propylene at Low Ethylene Pressure
AbstractIsomerization Metathesis (ISOMET) reaction is an emerging tool for “open loop” chemical recycling of polyethylene to propylene. Novel, latent N‐Alkyl substituted Cyclic(Alkyl)(Amino)Carbene (CAAC)–ruthenium catalysts (5a‐Ru, 3b‐Ru – 6c‐Ru) are developed rendering “inverted” chemical structure while showing enhanced ISOMET activity in combination with (RuHCl)(CO)(PPh3)3 (RuH) double bond isomerization co‐catalyst. Systematic investigations reveal that the steric hindrance of the substituents on nitrogen and carbon atom adjacent to carbene moiety in the CAAC ligand have significantly improved the catalytic activity and robustness. In contrast to the NHC‐Ru and CAAC‐Ru catalyst systems known so far, these systems show higher isomerization metathesis (ISOMET) activity (TON: 7400) on the model compound 1‐octadecene at as low as 3.0 bar optimized pressure, using technical grade (3.0) ethylene. The propylene content formed in the gas phase can reach up to 20% by volume.
“Inverted” Cyclic(Alkyl)(Amino)Carbene (CAAC) Ruthenium Complex Catalyzed Isomerization Metathesis (ISOMET) of Long Chain Olefins to Propylene at Low Ethylene Pressure
Advanced Science
Farkas, Vajk (author) / Csókás, Dániel (author) / Erdélyi, Ádám (author) / Turczel, Gábor (author) / Bényei, Attila (author) / Nagy, Tibor (author) / Kéki, Sándor (author) / Pápai, Imre (author) / Tuba, Róbert (author)
Advanced Science ; 11
2024-05-01
Article (Journal)
Electronic Resource
English
N-chelate ruthenium carbene complexes in olefin metathesis and isomerization
British Library Online Contents | 2015
|Investigation on terpolymer of ethylene/propylene/ω-bromo-α-olefins catalyzed by titanium complexes
British Library Online Contents | 2017
|Raíces y alas . Ai Weiwei en el CAAC
Online Contents | 2013
|Ringopening cross-metathesis of functional cyclo-olefins
British Library Online Contents | 2004
|