A platform for research: civil engineering, architecture and urbanism
In‐plane stability and shear deformation analysis of the H‐beam hollow arch
H‐shaped circular arc is a relatively novel type of open‐web steel arch, and currently, no reports have been published concerning its in‐plane stability. In this paper, the elastic and elastic–plastic in‐plane stability of the H‐shaped hollow circular arch is studied by theoretical deduction combined with numerical simulation. First, the overall shear rigidity of the H‐shaped circular arch is calculated, and the elastic buckling load formula of the arch is proposed and verified considering double shear deformation under full‐span radial and uniform loading. The overall elastic buckling load deduced in this paper is reasonable according to the finite element analysis. The results indicate that the influence of shear deformation on the overall elastic buckling load of the arch decreases with the increase of the span length. The arch‐bearing capacity is the largest when the rise‐span ratio is 0.25. Second, the restriction conditions necessary for avoiding local buckling of the chordal web before integral buckling of the H‐shaped steel hollow circular arch are analyzed. Finally, the elastic–plastic failure mechanism of the H‐shaped arch under full‐span radial and uniform loading is examined, and the formula for determining the ultimate bearing capacity that is achievable before failure under full‐span radial and uniform loading is proposed. ANSYS analysis shows that under the radial uniform loading, the chordal bars will yield near 1/4L and 3/4L, and ultimately, the structural failure of the lower chord occurs in the vicinity of 1/4L. The formulas presented in this paper agree well with the results obtained from the finite element analysis and can be used as a reference for engineering applications.
In‐plane stability and shear deformation analysis of the H‐beam hollow arch
H‐shaped circular arc is a relatively novel type of open‐web steel arch, and currently, no reports have been published concerning its in‐plane stability. In this paper, the elastic and elastic–plastic in‐plane stability of the H‐shaped hollow circular arch is studied by theoretical deduction combined with numerical simulation. First, the overall shear rigidity of the H‐shaped circular arch is calculated, and the elastic buckling load formula of the arch is proposed and verified considering double shear deformation under full‐span radial and uniform loading. The overall elastic buckling load deduced in this paper is reasonable according to the finite element analysis. The results indicate that the influence of shear deformation on the overall elastic buckling load of the arch decreases with the increase of the span length. The arch‐bearing capacity is the largest when the rise‐span ratio is 0.25. Second, the restriction conditions necessary for avoiding local buckling of the chordal web before integral buckling of the H‐shaped steel hollow circular arch are analyzed. Finally, the elastic–plastic failure mechanism of the H‐shaped arch under full‐span radial and uniform loading is examined, and the formula for determining the ultimate bearing capacity that is achievable before failure under full‐span radial and uniform loading is proposed. ANSYS analysis shows that under the radial uniform loading, the chordal bars will yield near 1/4L and 3/4L, and ultimately, the structural failure of the lower chord occurs in the vicinity of 1/4L. The formulas presented in this paper agree well with the results obtained from the finite element analysis and can be used as a reference for engineering applications.
In‐plane stability and shear deformation analysis of the H‐beam hollow arch
Liu, Xuejie (author) / Xiao, Tong (author)
2023-07-01
12 pages
Article (Journal)
Electronic Resource
English
New first order shear deformation beam theory with in-plane shear influence
Online Contents | 2016
|Out-of-Plane Stability Analysis of I-Section Steel Arch
British Library Conference Proceedings | 2013
|Elasticity Stability Analysis of Cable Stayed Arch Bridge in Plane
Trans Tech Publications | 2012
|Elasticity Stability Analysis of Cable Stayed Arch Bridge in Plane
British Library Conference Proceedings | 2012
|