A platform for research: civil engineering, architecture and urbanism
Magnetohydrodynamic flow of a micropolar nanofluid in association with Brownian motion and thermophoresis: Irreversibility analysis
This investigation was carried out with the purpose of presenting the flow of micropolar fluid flowing in the microchannel placed parallel to the ground. The prime aim of the work was to study the behavior of micropolar fluid and the response of the microrotation component when the two significant mechanisms namely Brownian movement and thermophoresis are accounted for, as these effects are mainly concerned with the motion of the particles of nano‐dimensions. For the flow of micropolar, we account for the extra kinematics variables combined with the classical continuum mechanics namely microinertia moment tensor and gyration tensor. Magnetic effect and suction/injection of the fluid through the channel walls are also facilitated. The influence on the fluid concentration due to the presence of activation energy was accounted in the present examination. On considering all of these effects, equations are carefully modeled and the solution was attained with the aid of Runge–Kutta Fehlberg 4–5th order method using a shooting scheme. The results have deciphered that the presence of material parameter elevates the microrotation component on the upper half of the channel and depletes it at the lower half. The microinertia parameter shows the opposite behavior of the material parameter. Brownian motion parameter is found to enhance the thermal profile and concentration profile. Lesser entropy was generated when the material parameter was high.
Magnetohydrodynamic flow of a micropolar nanofluid in association with Brownian motion and thermophoresis: Irreversibility analysis
This investigation was carried out with the purpose of presenting the flow of micropolar fluid flowing in the microchannel placed parallel to the ground. The prime aim of the work was to study the behavior of micropolar fluid and the response of the microrotation component when the two significant mechanisms namely Brownian movement and thermophoresis are accounted for, as these effects are mainly concerned with the motion of the particles of nano‐dimensions. For the flow of micropolar, we account for the extra kinematics variables combined with the classical continuum mechanics namely microinertia moment tensor and gyration tensor. Magnetic effect and suction/injection of the fluid through the channel walls are also facilitated. The influence on the fluid concentration due to the presence of activation energy was accounted in the present examination. On considering all of these effects, equations are carefully modeled and the solution was attained with the aid of Runge–Kutta Fehlberg 4–5th order method using a shooting scheme. The results have deciphered that the presence of material parameter elevates the microrotation component on the upper half of the channel and depletes it at the lower half. The microinertia parameter shows the opposite behavior of the material parameter. Brownian motion parameter is found to enhance the thermal profile and concentration profile. Lesser entropy was generated when the material parameter was high.
Magnetohydrodynamic flow of a micropolar nanofluid in association with Brownian motion and thermophoresis: Irreversibility analysis
Almeida, Felicita (author) / Gireesha, Bijjanal Jayanna (author) / Venkatesh, Puttaswamy (author)
Heat Transfer ; 52 ; 2032-2055
2023-03-01
24 pages
Article (Journal)
Electronic Resource
English