A platform for research: civil engineering, architecture and urbanism
Productivity and physiological responses during exposure to varying air temperatures and clothing conditions
This study assessed the effects of clothing and air temperature combinations on workplace productivity and physiological response. Ten male Japanese subjects were exposed to six combinations of clothing (0.3 clo and 0.9 clo) and air temperature (16°C, 26°C, and 36°C) during which cognitive performance (Bourdon and calculation tests), manual motor performance (finger‐tapping test), and physiological responses (heart rate, blood pressure, and skin and oral temperatures) were measured. Both cold exposure and lower clothing levels likely increased the Bourdon test performance. Calculation test performance tended to be affected by exposure to cold or neutral temperatures at the beginning of the test. Cold exposure undermined manual motor performance (especially when combined with fewer clothing items) while heat exposure significantly increased heart rate. Both cold exposure and higher clothing level during heat exposure increased blood pressure. Body temperature, particularly mean skin temperature, increased with higher air temperature and was significantly influenced by clothing insulation during cold exposure. These results provide novel evidence for the effects of clothing and air temperature (particularly cold) on human productivity and physiological responses in humans.
Productivity and physiological responses during exposure to varying air temperatures and clothing conditions
This study assessed the effects of clothing and air temperature combinations on workplace productivity and physiological response. Ten male Japanese subjects were exposed to six combinations of clothing (0.3 clo and 0.9 clo) and air temperature (16°C, 26°C, and 36°C) during which cognitive performance (Bourdon and calculation tests), manual motor performance (finger‐tapping test), and physiological responses (heart rate, blood pressure, and skin and oral temperatures) were measured. Both cold exposure and lower clothing levels likely increased the Bourdon test performance. Calculation test performance tended to be affected by exposure to cold or neutral temperatures at the beginning of the test. Cold exposure undermined manual motor performance (especially when combined with fewer clothing items) while heat exposure significantly increased heart rate. Both cold exposure and higher clothing level during heat exposure increased blood pressure. Body temperature, particularly mean skin temperature, increased with higher air temperature and was significantly influenced by clothing insulation during cold exposure. These results provide novel evidence for the effects of clothing and air temperature (particularly cold) on human productivity and physiological responses in humans.
Productivity and physiological responses during exposure to varying air temperatures and clothing conditions
Hu, Shaoying (author) / Maeda, Takafumi (author)
Indoor Air ; 30 ; 251-263
2020-03-01
13 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2018
|Physiological reactions and sensations of pleasantness under varying atmospheric conditions
Engineering Index Backfile | 1938
|British Library Conference Proceedings | 2001
|British Library Online Contents | 2001
|Performance of concrete coating under varying exposure conditions
Springer Verlag | 2002
|