A platform for research: civil engineering, architecture and urbanism
Effect of initial pH and substrate concentration on the lactic acid production from cassava wastewater fermentation by an enriched culture of acidogenic microorganisms
Recently, cassava processing wastewater has been considered an alternative substrate for lactic acid production due to its appreciable carbohydrate levels. The authors carried out different batch reactor trials aiming to favor the production of lactic acid through the fermentation of non‐sterilized cassava wastewater by an enriched culture of acidogenic microorganisms. To this end, the impact of different initial pHs (4.5, 5.0, 5.7, 6.5, and 7.0) and different initial substrate concentrations (10, 15.8, 30, 44.2, and 50 g/L) in terms of glucose on lactic acid production yield (Y) was evaluated by applying the design of experiment (DoE) known as central composite rotatable design (CCRD). The highest rate of lactic acid production (40 g/L) occurred with an initial pH of 6.5 and an initial substrate concentration of 50 g/L. The maximum yield was higher in trials T1, T2, T4, T5, and T8, reaching values of 0.80, 0.62, 0.60, 0.96, and 0.70 g/g, respectively. The maximum lactic acid productivity (P), of 0.60 and 0.73 g L−1 hr−1, was observed in trials T5 and T8, respectively. The enriched culture of acidogenic microorganisms was shown to favor the production of lactic acid, since the production of other acids, such as acetic and propionic acid, did not exceed 3.5 and 4.5 g/L, respectively. © 2020 Water Environment Federation Cassava wastewater presented potential to lactic acid production. The CCRD showed that highest lactic acid concentrations (40 g/L). The adoption of cassava wastewater or manipueira as a substrate resulted in important information on the tendency to obtain value‐added products such as lactic acid.
Effect of initial pH and substrate concentration on the lactic acid production from cassava wastewater fermentation by an enriched culture of acidogenic microorganisms
Recently, cassava processing wastewater has been considered an alternative substrate for lactic acid production due to its appreciable carbohydrate levels. The authors carried out different batch reactor trials aiming to favor the production of lactic acid through the fermentation of non‐sterilized cassava wastewater by an enriched culture of acidogenic microorganisms. To this end, the impact of different initial pHs (4.5, 5.0, 5.7, 6.5, and 7.0) and different initial substrate concentrations (10, 15.8, 30, 44.2, and 50 g/L) in terms of glucose on lactic acid production yield (Y) was evaluated by applying the design of experiment (DoE) known as central composite rotatable design (CCRD). The highest rate of lactic acid production (40 g/L) occurred with an initial pH of 6.5 and an initial substrate concentration of 50 g/L. The maximum yield was higher in trials T1, T2, T4, T5, and T8, reaching values of 0.80, 0.62, 0.60, 0.96, and 0.70 g/g, respectively. The maximum lactic acid productivity (P), of 0.60 and 0.73 g L−1 hr−1, was observed in trials T5 and T8, respectively. The enriched culture of acidogenic microorganisms was shown to favor the production of lactic acid, since the production of other acids, such as acetic and propionic acid, did not exceed 3.5 and 4.5 g/L, respectively. © 2020 Water Environment Federation Cassava wastewater presented potential to lactic acid production. The CCRD showed that highest lactic acid concentrations (40 g/L). The adoption of cassava wastewater or manipueira as a substrate resulted in important information on the tendency to obtain value‐added products such as lactic acid.
Effect of initial pH and substrate concentration on the lactic acid production from cassava wastewater fermentation by an enriched culture of acidogenic microorganisms
da Silva, Douglas B. (author) / Fernandes, Bruna S. (author) / da Silva, Ariovaldo J. (author)
Water Environment Research ; 93 ; 1925-1933
2021-10-01
9 pages
Article (Journal)
Electronic Resource
English
Volatile Fatty Acids Production by Acidogenic Fermentation of Wastewater: A Bibliometric Analysis
DOAJ | 2023
|Effect of Substrate Concentration on Hydrogen Production from Fermentation of Sugar Wastewater
British Library Conference Proceedings | 2013
|Springer Verlag | 2025
|Inhibitory effects of inorganic and organic coagulants on acidogenic fermentation
Online Contents | 2015
|Inhibition Effects of Inorganic and Polymer Coagulants on Acidogenic Fermentation
British Library Online Contents | 2007
|