A platform for research: civil engineering, architecture and urbanism
Nonlinear soil effects on observed and simulated response spectra
Soil effects are collectively referred to the influences that local geology and morphology of soil deposits have on ground motions coming from bedrock. The quantification of soil effects in building codes has a great impact in the design of structures because soil factors amplify the reference seismic input, which is typically defined for rock‐type soil class from probabilistic seismic hazards analysis. This topic, within earthquake engineering, represents one of the typical interfaces between structural engineering, geotechnical engineering and engineering seismology. In fact, this issue is generally addressed with different approaches depending on the background of the researchers. This article investigates soil effects combining the viewpoints of structural and geotechnical engineers and seismologists. It is shown that the averaging technique adopted for the definition of ground motion predictive models for spectral ordinates does not play a significant role in defining the results of rock‐like soil classes. However, for other soil classes characterized by soil effects, different methods of averaging the spectral ordinates produce significant differences. The main result of this study is the proposal of a new analytical formulation for the quantification of soil amplification factors for both acceleration and displacement response spectra. The proposed formulation is based on a database of real ground motions and simulated accelerograms. The latter have been obtained through stochastic ground response analyses, with the propagation of natural ground motions on rock‐like soil class through randomly generated soil deposits representative of different soil classes of Eurocode 8 and the Italian Building Code. The comparison between real and simulated data revealed the crucial role of soil nonlinearity in the definition of soil effects, which is also in relation with the variation of magnitude, fault distance and the intensity measures expected on outcropping rock.
Nonlinear soil effects on observed and simulated response spectra
Soil effects are collectively referred to the influences that local geology and morphology of soil deposits have on ground motions coming from bedrock. The quantification of soil effects in building codes has a great impact in the design of structures because soil factors amplify the reference seismic input, which is typically defined for rock‐type soil class from probabilistic seismic hazards analysis. This topic, within earthquake engineering, represents one of the typical interfaces between structural engineering, geotechnical engineering and engineering seismology. In fact, this issue is generally addressed with different approaches depending on the background of the researchers. This article investigates soil effects combining the viewpoints of structural and geotechnical engineers and seismologists. It is shown that the averaging technique adopted for the definition of ground motion predictive models for spectral ordinates does not play a significant role in defining the results of rock‐like soil classes. However, for other soil classes characterized by soil effects, different methods of averaging the spectral ordinates produce significant differences. The main result of this study is the proposal of a new analytical formulation for the quantification of soil amplification factors for both acceleration and displacement response spectra. The proposed formulation is based on a database of real ground motions and simulated accelerograms. The latter have been obtained through stochastic ground response analyses, with the propagation of natural ground motions on rock‐like soil class through randomly generated soil deposits representative of different soil classes of Eurocode 8 and the Italian Building Code. The comparison between real and simulated data revealed the crucial role of soil nonlinearity in the definition of soil effects, which is also in relation with the variation of magnitude, fault distance and the intensity measures expected on outcropping rock.
Nonlinear soil effects on observed and simulated response spectra
Andreotti, Guido (author) / Calvi, Gian Michele (author)
Earthquake Engineering & Structural Dynamics ; 50 ; 3831-3854
2021-11-01
24 pages
Article (Journal)
Electronic Resource
English
Nonlinear Response Spectra-Probability Approach
British Library Conference Proceedings | 1994
|Theory based criteria for soil effects on normalised elastic response spectra
British Library Conference Proceedings | 1998
|Effects of soil layer construction on characteristic periods of response spectra
British Library Online Contents | 2003
|Effects of soil layer construction on platform values of response spectra
British Library Online Contents | 2003
|Prediction of Observed Bridge Response with Soil-Pile-Structure Interaction
British Library Online Contents | 1994
|