A platform for research: civil engineering, architecture and urbanism
Wastewater Dewatering Polymer Affect on Biosolids Odor Emissions and Microbial Activity
Odor emissions and microbial activity associated with biosolids dewatered using seven different polyacrylamide cationic polymers were investigated. Nitrogen, sulfur, ketone, and odor unit emissions, and biosolids microbial community metabolic profiles were measured for biosolids containing each polymer. Ammonia represented more than 98% of total nitrogen flux for all polymers, with small concentrations of trimethyl amine. Dimethyl disulfide and carbon disulfide fluxes summed represented 87 to 97% of the sulfur flux for all polymers, with lesser quantities of dimethyl sulfide. Maximum dimethyl disulfide, ammonia, and trimethyl amine concentrations were estimated to be 3.4, 3.2, and 13.5 times greater than published detection limits, respectively. Maximum dimethyl sulfide, carbon disulfide, acetone, and methyl ethyl ketone concentrations were estimated to be 0.028, 0.007, 0.002, and 0.000 6 times less than published detection limits, respectively. All treatments were found to volatilize equal odor unit emissions (with the exception of one polymer), and polymers were not found to dramatically affect odor emission from biosolids application. Metabolic fingerprints revealed differences in the ability of microbial communities from certain polymer treatments to degrade amino acids as a sole carbon substrate. In addition, odor unit emissions were significantly correlated with potential for amino acid decomposition.
Wastewater Dewatering Polymer Affect on Biosolids Odor Emissions and Microbial Activity
Odor emissions and microbial activity associated with biosolids dewatered using seven different polyacrylamide cationic polymers were investigated. Nitrogen, sulfur, ketone, and odor unit emissions, and biosolids microbial community metabolic profiles were measured for biosolids containing each polymer. Ammonia represented more than 98% of total nitrogen flux for all polymers, with small concentrations of trimethyl amine. Dimethyl disulfide and carbon disulfide fluxes summed represented 87 to 97% of the sulfur flux for all polymers, with lesser quantities of dimethyl sulfide. Maximum dimethyl disulfide, ammonia, and trimethyl amine concentrations were estimated to be 3.4, 3.2, and 13.5 times greater than published detection limits, respectively. Maximum dimethyl sulfide, carbon disulfide, acetone, and methyl ethyl ketone concentrations were estimated to be 0.028, 0.007, 0.002, and 0.000 6 times less than published detection limits, respectively. All treatments were found to volatilize equal odor unit emissions (with the exception of one polymer), and polymers were not found to dramatically affect odor emission from biosolids application. Metabolic fingerprints revealed differences in the ability of microbial communities from certain polymer treatments to degrade amino acids as a sole carbon substrate. In addition, odor unit emissions were significantly correlated with potential for amino acid decomposition.
Wastewater Dewatering Polymer Affect on Biosolids Odor Emissions and Microbial Activity
Rosenfeld, Paul E. (author) / Henry, Charles L. (author) / Bennett, Daniel (author)
Water Environment Research ; 73 ; 363-367
2001-05-01
5 pages
Article (Journal)
Electronic Resource
English
WERF: Modeling of VOC Emissions from Biosolids Dewatering Processes
British Library Conference Proceedings | 1998
|Air Emissions from Biosolids Dewatering, Storage, and Composting Facilities
British Library Conference Proceedings | 1996
|Odor Control - Biosolids management and odor control
Online Contents | 2012