A platform for research: civil engineering, architecture and urbanism
Kirigami–Origami‐Inspired Lead‐Free Piezoelectric Ceramics
Kirigami‐ and oirigami‐inspired techniques have emerged as effective strategies for material structure design; however, the use of these techniques is usually limited to soft and deformable materials. Piezoelectric ceramics, which are typical functional ceramics, are widely used in electronic and energy devices; however, the processing options for piezoelectric ceramics are limited by their brittleness and feedstock viscosity. Here, a design strategy is proposed for the preparation of lead‐free piezoelectric ceramics inspired by kirigami/origami. This strategy involves direct writing printing and control over the external gravity during the calcination process for the preparation of curved and porous piezoelectric ceramics with specific shapes. The sintered BaTiO3 ceramics with curved geometries produced using this strategy exhibit a high piezoelectric constant (d33 = 275 pC N−1), which is 45% higher than that of conventionally sintered sheet ceramics. The curved structure of the ceramics is well‐suited for use in the human body and it was determined that these curved ceramics can detect pulse signals. This strategy can be applied in the large‐scale and low‐cost production of other piezoelectric ceramics with various curved shapes and provides a new approach for the preparation of complex‐shaped ceramics.
Kirigami–Origami‐Inspired Lead‐Free Piezoelectric Ceramics
Kirigami‐ and oirigami‐inspired techniques have emerged as effective strategies for material structure design; however, the use of these techniques is usually limited to soft and deformable materials. Piezoelectric ceramics, which are typical functional ceramics, are widely used in electronic and energy devices; however, the processing options for piezoelectric ceramics are limited by their brittleness and feedstock viscosity. Here, a design strategy is proposed for the preparation of lead‐free piezoelectric ceramics inspired by kirigami/origami. This strategy involves direct writing printing and control over the external gravity during the calcination process for the preparation of curved and porous piezoelectric ceramics with specific shapes. The sintered BaTiO3 ceramics with curved geometries produced using this strategy exhibit a high piezoelectric constant (d33 = 275 pC N−1), which is 45% higher than that of conventionally sintered sheet ceramics. The curved structure of the ceramics is well‐suited for use in the human body and it was determined that these curved ceramics can detect pulse signals. This strategy can be applied in the large‐scale and low‐cost production of other piezoelectric ceramics with various curved shapes and provides a new approach for the preparation of complex‐shaped ceramics.
Kirigami–Origami‐Inspired Lead‐Free Piezoelectric Ceramics
Wang, Zehuan (author) / Ma, Denghao (author) / Wang, Yunhan (author) / Xie, Yan (author) / Yu, Zhonghui (author) / Cheng, Jin (author) / Li, Li (author) / Sun, Liang (author) / Dong, Shuxiang (author) / Wang, Hong (author)
Advanced Science ; 10
2023-06-01
7 pages
Article (Journal)
Electronic Resource
English
From flat sheets to curved geometries: Origami and kirigami approaches
British Library Online Contents | 2018
|Morphology analysis of a foldable kirigami structure based on Miura origami
British Library Online Contents | 2014
|Kirigami-inspired wind steering for natural ventilation
Elsevier | 2024
|