A platform for research: civil engineering, architecture and urbanism
Climate‐Induced Flow Regime Alterations and their Implications for the Lancang River, China
Most studies of the Lancang River have focussed on the influence of hydropower generation on the riverine ecosystem. Few studies have explored climate‐induced flow regime alterations and their implications for the riverine ecosystem. There is a pressing need for improved understanding of the implications of such climate‐induced flow regime alterations in the Lancang River Basin. Future streamflow under the A2 and B2 scenarios of Hadley Centre coupled model version 3 (HadCM3) are predicted using a back propagation artificial neural network. Potential effects of flow regime alterations are tested by amended annual proportional flow deviation (AAPFD). Projected streamflow will decrease in wet season months and will increase in dry season months. Monthly streamflow at Jiuzhou station was projected to range from a 27.9% decrease to a 158.4% increase. For Gajiu station, the percent increase was projected to range from 1.4% to 70.4%, while the decrease ranged from 0.2% to 16.9%. Changes in streamflow at Yunjinghong station ranged from a 46.5% decrease to a 135.3% increase. Projected streamflow changes during high and low flow periods will have important implications for the ecological processes of the Lancang River Basin. AAPFD indicates that these changes will have serious effects on the Lancang River Basin ecosystem. Projected climate‐induced flow regime alterations during the period of 2071–2095 will have particularly serious effects on riverine ecosystem, especially in the upstream and downstream sections of the Lancang River. The A2 scenario will pose a more serious threat to riverine ecosystem health. Copyright © 2014 John Wiley & Sons, Ltd.
Climate‐Induced Flow Regime Alterations and their Implications for the Lancang River, China
Most studies of the Lancang River have focussed on the influence of hydropower generation on the riverine ecosystem. Few studies have explored climate‐induced flow regime alterations and their implications for the riverine ecosystem. There is a pressing need for improved understanding of the implications of such climate‐induced flow regime alterations in the Lancang River Basin. Future streamflow under the A2 and B2 scenarios of Hadley Centre coupled model version 3 (HadCM3) are predicted using a back propagation artificial neural network. Potential effects of flow regime alterations are tested by amended annual proportional flow deviation (AAPFD). Projected streamflow will decrease in wet season months and will increase in dry season months. Monthly streamflow at Jiuzhou station was projected to range from a 27.9% decrease to a 158.4% increase. For Gajiu station, the percent increase was projected to range from 1.4% to 70.4%, while the decrease ranged from 0.2% to 16.9%. Changes in streamflow at Yunjinghong station ranged from a 46.5% decrease to a 135.3% increase. Projected streamflow changes during high and low flow periods will have important implications for the ecological processes of the Lancang River Basin. AAPFD indicates that these changes will have serious effects on the Lancang River Basin ecosystem. Projected climate‐induced flow regime alterations during the period of 2071–2095 will have particularly serious effects on riverine ecosystem, especially in the upstream and downstream sections of the Lancang River. The A2 scenario will pose a more serious threat to riverine ecosystem health. Copyright © 2014 John Wiley & Sons, Ltd.
Climate‐Induced Flow Regime Alterations and their Implications for the Lancang River, China
Tang, J. (author) / Yin, X. A. (author) / Yang, P. (author) / Yang, Z. F. (author)
River Research and Applications ; 31 ; 422-432
2015-05-01
11 pages
Article (Journal)
Electronic Resource
English
Assessment of the Flow Regime Alterations in the Juma River, China
British Library Conference Proceedings | 2013
|British Library Online Contents | 2015
|Regulation of Xiaoganlanba Sharp Shoal in the Lancang River
British Library Conference Proceedings | 2004
|