A platform for research: civil engineering, architecture and urbanism
Antiferroelectric Order in Nematic Liquids: Flexoelectricity Versus Electrostatics
The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms. By controlling the magnitude of electrostatic forces through ion addition in two representative ferroelectric nematic materials, it is shown that the primary mechanism for the emergence of antiferroelectric order is the flexoelectric coupling between electric polarization and splay deformation of the nematic director. The addition of ions significantly expands the temperature range over which the antiferroelectric phase is observed, with this range increasing with increasing ion concentration. Polarizing optical microscopy studies and second harmonic generation (SHG) microscopy reveal the splayed structure modulated in 2D, while SHG interferometry confirms its antiferroelectric character. The model previously used to describe pretransitional behavior is extended by incorporating the electrostatic contribution of ions. The model shows qualitative agreement with the experiments, accurately reproducing the phase diagram and temperature‐dependent evolution of the modulation period of the observed structure.
Antiferroelectric Order in Nematic Liquids: Flexoelectricity Versus Electrostatics
The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms. By controlling the magnitude of electrostatic forces through ion addition in two representative ferroelectric nematic materials, it is shown that the primary mechanism for the emergence of antiferroelectric order is the flexoelectric coupling between electric polarization and splay deformation of the nematic director. The addition of ions significantly expands the temperature range over which the antiferroelectric phase is observed, with this range increasing with increasing ion concentration. Polarizing optical microscopy studies and second harmonic generation (SHG) microscopy reveal the splayed structure modulated in 2D, while SHG interferometry confirms its antiferroelectric character. The model previously used to describe pretransitional behavior is extended by incorporating the electrostatic contribution of ions. The model shows qualitative agreement with the experiments, accurately reproducing the phase diagram and temperature‐dependent evolution of the modulation period of the observed structure.
Antiferroelectric Order in Nematic Liquids: Flexoelectricity Versus Electrostatics
Medle Rupnik, Peter (author) / Hanžel, Ema (author) / Lovšin, Matija (author) / Osterman, Natan (author) / Gibb, Calum Jordan (author) / Mandle, Richard J. (author) / Sebastián, Nerea (author) / Mertelj, Alenka (author)
Advanced Science ; 12
2025-03-01
13 pages
Article (Journal)
Electronic Resource
English
Antiferroelectric Order in Nematic Liquids: Flexoelectricity Versus Electrostatics
Wiley | 2025
|British Library Online Contents | 2013
|Mechanical switching of ferroelectric domains beyond flexoelectricity
British Library Online Contents | 2018
|Mechanical switching of ferroelectric domains beyond flexoelectricity
British Library Online Contents | 2018
|