A platform for research: civil engineering, architecture and urbanism
An MST4‐pβ‐CateninThr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis
Elevated Wnt/β‐catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4‐pβ‐cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates β‐catenin at Thr40 to block its Ser33 phosphorylation by GSK3β. Thus, MST4 mediates an active process that prevents β‐catenin from binding to and being degraded by β‐TrCP, leading to accumulation and full activation of β‐catenin. Depletion of MST4 causes loss of ISCs and inhibits CRC growth. Mice bearing either MST4T178E mutation with constitutive kinase activity or β‐cateninT40D mutation mimicking MST4‐mediated phosphorylation show overly increased ISCs/CSCs and exacerbates CRC. Furthermore, the MST4‐pβ‐cateninThr40 axis is upregulated and correlated with poor prognosis of human CRC. Collectively, this work establishes a previously undefined machinery for β‐catenin activation, and further reveals its function in stem cell and tumor biology, opening new opportunities for targeted therapy of CRC.
An MST4‐pβ‐CateninThr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis
Elevated Wnt/β‐catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4‐pβ‐cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates β‐catenin at Thr40 to block its Ser33 phosphorylation by GSK3β. Thus, MST4 mediates an active process that prevents β‐catenin from binding to and being degraded by β‐TrCP, leading to accumulation and full activation of β‐catenin. Depletion of MST4 causes loss of ISCs and inhibits CRC growth. Mice bearing either MST4T178E mutation with constitutive kinase activity or β‐cateninT40D mutation mimicking MST4‐mediated phosphorylation show overly increased ISCs/CSCs and exacerbates CRC. Furthermore, the MST4‐pβ‐cateninThr40 axis is upregulated and correlated with poor prognosis of human CRC. Collectively, this work establishes a previously undefined machinery for β‐catenin activation, and further reveals its function in stem cell and tumor biology, opening new opportunities for targeted therapy of CRC.
An MST4‐pβ‐CateninThr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis
Zhang, Hui (author) / Lin, Moubin (author) / Dong, Chao (author) / Tang, Yang (author) / An, Liwei (author) / Ju, Junyi (author) / Wen, Fuping (author) / Chen, Fan (author) / Wang, Meng (author) / Wang, Wenjia (author)
Advanced Science ; 8
2021-09-01
17 pages
Article (Journal)
Electronic Resource
English
MDM2-MOF-H4K16ac axis contributes to tumorigenesis induced by Notch
British Library Online Contents | 2014
|