A platform for research: civil engineering, architecture and urbanism
Terrain‐derived measures for basin conservation and restoration planning
Centuries of human development have altered the connectivity of rivers, adversely impacting ecosystems and the services they provide. Significant investments in natural resource projects are made annually with the goal of restoring function to degraded rivers and floodplains and protecting freshwater resources. Yet restoration projects often fall short of their objectives, in part due to the lack of systems‐based strategic planning. To evaluate channel‐floodplain (dis)connectivity and erosion/incision hazard at the basin scale, we calculate Specific Stream Power (SSP), an estimate of the energy of a river, using a topographically based, low‐complexity hydraulic model. Other basin‐wide SSP modeling approaches neglect reach‐specific geometric information embedded in Digital Elevation Models. Our approach leverages this information to generate reach‐specific SSP‐flow curves. We extract measures from these curves that describe (dis)connected floodwater storage capacity and erosion hazard at individual design storm flood stages and demonstrate how these measures may be used to identify watershed‐scale patterns in connectivity. We show proof‐of‐concept using 25 reaches in the Mad River watershed in central Vermont and demonstrate that the SSP results have acceptable agreement with a well‐calibrated process‐based model (2D Hydraulic Engineering Center's River Analysis System) across a broad range of design events. While systems‐based planning of regional restoration and conservation activities has been limited, largely due to computational and human resource requirements, measures derived from low‐complexity models can provide an overview of reach‐scale conditions at the regional level and aid planners in identifying areas for further restoration and/or conservation assessments.
Terrain‐derived measures for basin conservation and restoration planning
Centuries of human development have altered the connectivity of rivers, adversely impacting ecosystems and the services they provide. Significant investments in natural resource projects are made annually with the goal of restoring function to degraded rivers and floodplains and protecting freshwater resources. Yet restoration projects often fall short of their objectives, in part due to the lack of systems‐based strategic planning. To evaluate channel‐floodplain (dis)connectivity and erosion/incision hazard at the basin scale, we calculate Specific Stream Power (SSP), an estimate of the energy of a river, using a topographically based, low‐complexity hydraulic model. Other basin‐wide SSP modeling approaches neglect reach‐specific geometric information embedded in Digital Elevation Models. Our approach leverages this information to generate reach‐specific SSP‐flow curves. We extract measures from these curves that describe (dis)connected floodwater storage capacity and erosion hazard at individual design storm flood stages and demonstrate how these measures may be used to identify watershed‐scale patterns in connectivity. We show proof‐of‐concept using 25 reaches in the Mad River watershed in central Vermont and demonstrate that the SSP results have acceptable agreement with a well‐calibrated process‐based model (2D Hydraulic Engineering Center's River Analysis System) across a broad range of design events. While systems‐based planning of regional restoration and conservation activities has been limited, largely due to computational and human resource requirements, measures derived from low‐complexity models can provide an overview of reach‐scale conditions at the regional level and aid planners in identifying areas for further restoration and/or conservation assessments.
Terrain‐derived measures for basin conservation and restoration planning
Matt, Jeremy E. (author) / Underwood, Kristen L. (author) / Diehl, Rebecca M. (author) / Lawson, K. S. (author) / Worley, Lindsay C. (author) / Rizzo, Donna M. (author)
River Research and Applications ; 39 ; 1795-1811
2023-11-01
17 pages
Article (Journal)
Electronic Resource
English
Soil conservation measures in river basin planning
Engineering Index Backfile | 1962
|Conservation Planning in the Deschutes River Basin, Oregon
British Library Conference Proceedings | 1995
|British Library Conference Proceedings | 1995
|Masonry conservation & restoration
TIBKAT | 1993
|Taylor & Francis Verlag | 1995
|