A platform for research: civil engineering, architecture and urbanism
Analysis of Diffusion and Adsorption of Volatile Organic Compounds in Zeolites by a Single Pellet Moment Technique
10.1002/clen.200800106.abs
The diffusion and adsorption of two common volatile organic compounds, i. e., methanol and benzene, in different zeolite pellets were studied experimentally by using the single pellet moment technique. The experiments were conducted in a one‐sided single pellet adsorption cell at different temperatures in the range between 303 and 343 K. The results showed that both volatile organic tracers were adsorbed reversibly onto all zeolite samples. The overall adsorption equilibrium constants of both volatile organic compounds decreased with increasing temperature. The adsorption of the tracers onto the zeolite samples were found to increase in the order of NaY > clinoptilolite > 4A. In the range between 303 and 343 K, the adsorption constants of benzene range from 10.51 to 5.52 for zeolite 4A, from 11.90 to 6.37 for clinoptilolite and from 20.32 to 9.82 for NaY. The adsorption constants of methanol range from 19.05 to 8.26 for zeolite 4A, from 38.40 to 9.12 for clinoptilolite and from 74.21 to 14.70 for NaY at temperatures between 303 and 333 K. The effective diffusivities for benzene varied from 2.20·10–6 to 13.01·10–6 m2/s, whereas for methanol, they varied from 9.80·10–6 to 15.60·10–6 m2/s at the temperatures studied.
Analysis of Diffusion and Adsorption of Volatile Organic Compounds in Zeolites by a Single Pellet Moment Technique
10.1002/clen.200800106.abs
The diffusion and adsorption of two common volatile organic compounds, i. e., methanol and benzene, in different zeolite pellets were studied experimentally by using the single pellet moment technique. The experiments were conducted in a one‐sided single pellet adsorption cell at different temperatures in the range between 303 and 343 K. The results showed that both volatile organic tracers were adsorbed reversibly onto all zeolite samples. The overall adsorption equilibrium constants of both volatile organic compounds decreased with increasing temperature. The adsorption of the tracers onto the zeolite samples were found to increase in the order of NaY > clinoptilolite > 4A. In the range between 303 and 343 K, the adsorption constants of benzene range from 10.51 to 5.52 for zeolite 4A, from 11.90 to 6.37 for clinoptilolite and from 20.32 to 9.82 for NaY. The adsorption constants of methanol range from 19.05 to 8.26 for zeolite 4A, from 38.40 to 9.12 for clinoptilolite and from 74.21 to 14.70 for NaY at temperatures between 303 and 333 K. The effective diffusivities for benzene varied from 2.20·10–6 to 13.01·10–6 m2/s, whereas for methanol, they varied from 9.80·10–6 to 15.60·10–6 m2/s at the temperatures studied.
Analysis of Diffusion and Adsorption of Volatile Organic Compounds in Zeolites by a Single Pellet Moment Technique
Akosman, Cevdet (author) / Kalender, Mehmet (author)
CLEAN – Soil, Air, Water ; 37 ; 115-121
2009-02-01
7 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2014
|Diffusion of Volatile Organic Compounds through an HDPE Geomembrane
British Library Conference Proceedings | 2011
|Volatile organic compounds adsorption onto neat and hybrid bacterial cellulose
British Library Online Contents | 2015
|Modeling of Gas Adsorption Process of a Single Pellet
British Library Conference Proceedings | 2012
|