A platform for research: civil engineering, architecture and urbanism
A Bioorthogonal Antidote Against the Photosensitivity after Photodynamic Therapy
As an effective and non‐invasive treatment modality for cancer, photodynamic therapy (PDT) has attracted considerable interest. With the recent advances in the photosensitizing agents, the fiber‐optic systems, and other aspects, its application is extended to a wide range of superficial and localized cancers. However, for the few clinically used photosensitizers, most of them suffer from the drawback of causing prolonged photosensitivity after the treatment. As a result, post‐PDT management is also a crucial issue. Herein, a facile bioorthogonal approach is reported that can effectively suppress this common side effect of PDT in nude mice. It involves the use of an antidote that contains a black‐hole quencher BHQ‐3 conjugated with a bicyclo[6.1.0]non‐4‐yne (BCN) moiety and a tetrazine‐substituted boron dipyrromethene‐based photosensitizer. By using tumor‐bearing nude mice as an animal model, it is demonstrated that after PDT with this photosensitizer, the administration of the antidote can effectively quench the photodynamic activity of the residual photosensitizer by bringing the BHQ‐3 quencher close to the photosensitizing unit through a rapid click reaction. It results in substantial reduction in skin damage upon light irradiation. The overall results demonstrate that this simple and facile strategy can provide an effective means for minimizing the photosensitivity after PDT.
A Bioorthogonal Antidote Against the Photosensitivity after Photodynamic Therapy
As an effective and non‐invasive treatment modality for cancer, photodynamic therapy (PDT) has attracted considerable interest. With the recent advances in the photosensitizing agents, the fiber‐optic systems, and other aspects, its application is extended to a wide range of superficial and localized cancers. However, for the few clinically used photosensitizers, most of them suffer from the drawback of causing prolonged photosensitivity after the treatment. As a result, post‐PDT management is also a crucial issue. Herein, a facile bioorthogonal approach is reported that can effectively suppress this common side effect of PDT in nude mice. It involves the use of an antidote that contains a black‐hole quencher BHQ‐3 conjugated with a bicyclo[6.1.0]non‐4‐yne (BCN) moiety and a tetrazine‐substituted boron dipyrromethene‐based photosensitizer. By using tumor‐bearing nude mice as an animal model, it is demonstrated that after PDT with this photosensitizer, the administration of the antidote can effectively quench the photodynamic activity of the residual photosensitizer by bringing the BHQ‐3 quencher close to the photosensitizing unit through a rapid click reaction. It results in substantial reduction in skin damage upon light irradiation. The overall results demonstrate that this simple and facile strategy can provide an effective means for minimizing the photosensitivity after PDT.
A Bioorthogonal Antidote Against the Photosensitivity after Photodynamic Therapy
Xue, Evelyn Y. (author) / Yang, Caixia (author) / Zhou, Yimin (author) / Ng, Dennis K. P. (author)
Advanced Science ; 11
2024-03-01
14 pages
Article (Journal)
Electronic Resource
English
A Bioorthogonal Antidote Against the Photosensitivity after Photodynamic Therapy
Wiley | 2024
|Photodynamic therapy against cyanobacteria
Online Contents | 2007
|Photodynamic therapy against cyanobacteria
Wiley | 2007
|A Spatially Distributed Microneedle System for Bioorthogonal T Cell‐Guided Cancer Therapy
Wiley | 2025
|Photosensitivity in Optical Fibers
British Library Online Contents | 1993
|