A platform for research: civil engineering, architecture and urbanism
In Situ Visualization of Localized Surface Plasmon Resonance‐Driven Hot Hole Flux
Nonradiative surface plasmon decay produces highly energetic electron–hole pairs with desirable characteristics, but the measurement and harvesting of nonequilibrium hot holes remain challenging due to ultrashort lifetime and diffusion length. Here, the direct observation of LSPR‐driven hot holes created in a Au nanoprism/p‐GaN platform using photoconductive atomic force microscopy (pc‐AFM) is demonstrated. Significant enhancement of photocurrent in the plasmonic platforms under light irradiation is revealed, providing direct evidence of plasmonic hot hole generation. Experimental and numerical analysis verify that a confined |E|‐field surrounding a single Au nanoprism spurs resonant coupling between localized surface plasmon resonance (LSPR) and surface charges, thus boosting hot hole generation. Furthermore, geometrical and size dependence on the extraction of LSPR‐driven hot holes suggests an optimized pathway for their efficient utilization. The direct visualization of hot hole flow at the nanoscale provides significant opportunities for harnessing the underlying nature and potential of plasmonic hot holes.
In Situ Visualization of Localized Surface Plasmon Resonance‐Driven Hot Hole Flux
Nonradiative surface plasmon decay produces highly energetic electron–hole pairs with desirable characteristics, but the measurement and harvesting of nonequilibrium hot holes remain challenging due to ultrashort lifetime and diffusion length. Here, the direct observation of LSPR‐driven hot holes created in a Au nanoprism/p‐GaN platform using photoconductive atomic force microscopy (pc‐AFM) is demonstrated. Significant enhancement of photocurrent in the plasmonic platforms under light irradiation is revealed, providing direct evidence of plasmonic hot hole generation. Experimental and numerical analysis verify that a confined |E|‐field surrounding a single Au nanoprism spurs resonant coupling between localized surface plasmon resonance (LSPR) and surface charges, thus boosting hot hole generation. Furthermore, geometrical and size dependence on the extraction of LSPR‐driven hot holes suggests an optimized pathway for their efficient utilization. The direct visualization of hot hole flow at the nanoscale provides significant opportunities for harnessing the underlying nature and potential of plasmonic hot holes.
In Situ Visualization of Localized Surface Plasmon Resonance‐Driven Hot Hole Flux
Lee, Hyunhwa (author) / Song, Kyoungjae (author) / Lee, Moonsang (author) / Park, Jeong Young (author)
Advanced Science ; 7
2020-10-01
8 pages
Article (Journal)
Electronic Resource
English
Surface Plasmon Resonanance Exploitation of Localized Surface Plasmon Resonance
British Library Online Contents | 2004
|Optical Sensing Based on Localized Surface Plasmon Resonance
British Library Online Contents | 2010
|Localized surface plasmon resonance tuning via nanostructured gradient Ag surfaces
British Library Online Contents | 2017
|Localized surface plasmon resonance based point-of-care system for sepsis diagnosis
DOAJ | 2020
|