A platform for research: civil engineering, architecture and urbanism
A Fully Biodegradable Ferroelectric Skin Sensor from Edible Porcine Skin Gelatine
High‐performance biodegradable electronic devices are being investigated to address the global electronic waste problem. In this work, a fully biodegradable ferroelectric nanogenerator‐driven skin sensor with ultrasensitive bimodal sensing capability based on edible porcine skin gelatine is demonstrated. The microstructure and molecular engineering of gelatine induces polarization confinement that gives rise the ferroelectric properties, resulting in a piezoelectric coefficient (d33) of ≈24 pC N−1 and pyroelectric coefficient of ≈13 µC m−2K−1, which are 6 and 11.8 times higher, respectively, than those of the conventional planar gelatine. The ferroelectric gelatine skin sensor has exceptionally high pressure sensitivity (≈41 mV Pa−1) and the lowest detection limit of pressure (≈0.005 Pa) and temperature (≈0.04 K) ever reported for ferroelectric sensors. In proof‐of‐concept tests, this device is able to sense the spatially resolved pressure, temperature, and surface texture of an unknown object, demonstrating potential for robotic skins and wearable electronics with zero waste footprint.
A Fully Biodegradable Ferroelectric Skin Sensor from Edible Porcine Skin Gelatine
High‐performance biodegradable electronic devices are being investigated to address the global electronic waste problem. In this work, a fully biodegradable ferroelectric nanogenerator‐driven skin sensor with ultrasensitive bimodal sensing capability based on edible porcine skin gelatine is demonstrated. The microstructure and molecular engineering of gelatine induces polarization confinement that gives rise the ferroelectric properties, resulting in a piezoelectric coefficient (d33) of ≈24 pC N−1 and pyroelectric coefficient of ≈13 µC m−2K−1, which are 6 and 11.8 times higher, respectively, than those of the conventional planar gelatine. The ferroelectric gelatine skin sensor has exceptionally high pressure sensitivity (≈41 mV Pa−1) and the lowest detection limit of pressure (≈0.005 Pa) and temperature (≈0.04 K) ever reported for ferroelectric sensors. In proof‐of‐concept tests, this device is able to sense the spatially resolved pressure, temperature, and surface texture of an unknown object, demonstrating potential for robotic skins and wearable electronics with zero waste footprint.
A Fully Biodegradable Ferroelectric Skin Sensor from Edible Porcine Skin Gelatine
Ghosh, Sujoy Kumar (author) / Park, Jonghwa (author) / Na, Sangyun (author) / Kim, Minsoo P. (author) / Ko, Hyunhyub (author)
Advanced Science ; 8
2021-07-01
11 pages
Article (Journal)
Electronic Resource
English
Collodion- und Gelatine-Negativ
DataCite | 1892
|Ein fotochromes Silberhalogenid/Gelatine‐System
Wiley | 2006
|Das Copiren auf Gelatine-Emulsionspapier
DataCite | 1890
|