A platform for research: civil engineering, architecture and urbanism
Exploring the biomechanics of walking and crowd “flow”
Crowd movement simulation models are generally based on aggregated speed and flow data collected more than 50 years ago. There appears to be no validated modelling capability to include the impact of recent and future changes in population demographics, resulting from an ageing population and increasing obesity rates. New analytical approaches and data gathering are required to successfully model crowd movement and safety for current and future generations. This study carried out (a) a review of the primary components of crowd movement, demographics and analytical techniques, (b) prototype experiments to investigate age‐related aspects of space and potential points of contact and (c) a new predictive model for crowd flow analysis based on pedestrian biomechanics and anthropometric data. The model uses the physical space taken up by the biomechanical walking process and the spatial buffer between points of potential contact with other pedestrians to predict the speed of movement at different levels of congestion. The new analytical model was used to predict single file speeds (for people with different demographics in congested space), which compared well with published experimental data. The next steps for model development for wider “flows” and additional experiments to provide data sets for wider demographics are also proposed.
Exploring the biomechanics of walking and crowd “flow”
Crowd movement simulation models are generally based on aggregated speed and flow data collected more than 50 years ago. There appears to be no validated modelling capability to include the impact of recent and future changes in population demographics, resulting from an ageing population and increasing obesity rates. New analytical approaches and data gathering are required to successfully model crowd movement and safety for current and future generations. This study carried out (a) a review of the primary components of crowd movement, demographics and analytical techniques, (b) prototype experiments to investigate age‐related aspects of space and potential points of contact and (c) a new predictive model for crowd flow analysis based on pedestrian biomechanics and anthropometric data. The model uses the physical space taken up by the biomechanical walking process and the spatial buffer between points of potential contact with other pedestrians to predict the speed of movement at different levels of congestion. The new analytical model was used to predict single file speeds (for people with different demographics in congested space), which compared well with published experimental data. The next steps for model development for wider “flows” and additional experiments to provide data sets for wider demographics are also proposed.
Exploring the biomechanics of walking and crowd “flow”
Thompson, Peter (author) / Nilsson, Daniel (author) / Boyce, Karen (author) / Molloy, Martin (author) / McGrath, Denise (author)
Fire and Materials ; 44 ; 879-893
2020-10-01
15 pages
Article (Journal)
Electronic Resource
English
Spectral Model for Crowd Walking Load
ASCE | 2019
|Equivalent Dynamic Load Factor for Crowd Walking Loads
ASCE | 2022
|Exploring Trampling and Crushing in a Crowd
Online Contents | 2005
|