A platform for research: civil engineering, architecture and urbanism
Time‐Varying Lane‐Based Capacity Reversibility for Traffic Management
Abstract: This article presents a new bi‐level formulation for time‐varying lane‐based capacity reversibility problem for traffic management. The problem is formulated as a bi‐level program where the lower level is the cell‐transmission‐based user‐optimal dynamic traffic assignment (UODTA). Due to its Non‐deterministic Polynomial‐time hard (NP‐hard) complexity, the genetic algorithm (GA) with the simulation‐based UODTA is adopted to solve multiorigin multidestination problems. Four GA variations are proposed. GA1 is a simple GA. GA2, GA3, and GA4 with a jam‐density factor parameter (JDF) employ time‐dependent congestion measures in their decoding procedures. The four algorithms are empirically tested on a grid network and compared based on solution quality, convergence speed, and central processing unit (CPU) time. GA3 with JDF of 0.6 appears best on the three criteria. On the Sioux Falls network, GA3 with JDF of 0.7 performs best. The GA with the appropriate inclusion of problem‐specific knowledge and parameter calibration indeed provides excellent results when compared with the simple GA.
Time‐Varying Lane‐Based Capacity Reversibility for Traffic Management
Abstract: This article presents a new bi‐level formulation for time‐varying lane‐based capacity reversibility problem for traffic management. The problem is formulated as a bi‐level program where the lower level is the cell‐transmission‐based user‐optimal dynamic traffic assignment (UODTA). Due to its Non‐deterministic Polynomial‐time hard (NP‐hard) complexity, the genetic algorithm (GA) with the simulation‐based UODTA is adopted to solve multiorigin multidestination problems. Four GA variations are proposed. GA1 is a simple GA. GA2, GA3, and GA4 with a jam‐density factor parameter (JDF) employ time‐dependent congestion measures in their decoding procedures. The four algorithms are empirically tested on a grid network and compared based on solution quality, convergence speed, and central processing unit (CPU) time. GA3 with JDF of 0.6 appears best on the three criteria. On the Sioux Falls network, GA3 with JDF of 0.7 performs best. The GA with the appropriate inclusion of problem‐specific knowledge and parameter calibration indeed provides excellent results when compared with the simple GA.
Time‐Varying Lane‐Based Capacity Reversibility for Traffic Management
Karoonsoontawong, Ampol (author) / Lin, Dung‐Ying (author)
Computer‐Aided Civil and Infrastructure Engineering ; 26 ; 632-646
2011-11-01
15 pages
Article (Journal)
Electronic Resource
English
Time‐Varying Lane‐Based Capacity Reversibility for Traffic Management
Online Contents | 2011
|Capacity of Single-Lane Roundabouts with Slow Traffic
British Library Online Contents | 1999
|A Reserve Capacity Model of Optimal Traffic Lane Allocating
British Library Conference Proceedings | 2009
|