A platform for research: civil engineering, architecture and urbanism
Seismic behaviour of shallow foundations: Shaking table experiments vs numerical modelling
The capability of a simplified approach to model the behaviour of shallow foundations during earthquakes is explored by numerical simulation of a series of shaking table tests performed at the Public Works Research Institute, Tsukuba, Japan. After a summary of the experimental work, the numerical model is introduced, where the whole soil–foundation system is represented by a multi‐degrees‐of‐freedom elasto‐plastic macro‐element, supporting a single degree‐of‐freedom superstructure. In spite of its simplicity and of the large intensity of the excitation involving a high degree of nonlinearity in the foundation response, the proposed approach is found to provide very satisfactory results in predicting the rocking behaviour of the system and the seismic actions transmitted to the superstructure. The agreement is further improved by introducing a simple degradation rule of the foundation stiffness parameters, suitable to capture even some minor details of the observed rocking response. On the other hand, the performance of the model is not fully satisfactory in predicting vertical settlements. Copyright © 2007 John Wiley & Sons, Ltd.
Seismic behaviour of shallow foundations: Shaking table experiments vs numerical modelling
The capability of a simplified approach to model the behaviour of shallow foundations during earthquakes is explored by numerical simulation of a series of shaking table tests performed at the Public Works Research Institute, Tsukuba, Japan. After a summary of the experimental work, the numerical model is introduced, where the whole soil–foundation system is represented by a multi‐degrees‐of‐freedom elasto‐plastic macro‐element, supporting a single degree‐of‐freedom superstructure. In spite of its simplicity and of the large intensity of the excitation involving a high degree of nonlinearity in the foundation response, the proposed approach is found to provide very satisfactory results in predicting the rocking behaviour of the system and the seismic actions transmitted to the superstructure. The agreement is further improved by introducing a simple degradation rule of the foundation stiffness parameters, suitable to capture even some minor details of the observed rocking response. On the other hand, the performance of the model is not fully satisfactory in predicting vertical settlements. Copyright © 2007 John Wiley & Sons, Ltd.
Seismic behaviour of shallow foundations: Shaking table experiments vs numerical modelling
Paolucci, Roberto (author) / Shirato, Masahiro (author) / Yilmaz, M. Tolga (author)
Earthquake Engineering & Structural Dynamics ; 37 ; 577-595
2008-04-10
19 pages
Article (Journal)
Electronic Resource
English
Seismic behaviour of shallow foundations: Shaking table experiments vs numerical modelling
Online Contents | 2008
|Shaking table tests on shallow foundations
British Library Conference Proceedings | 2007
|Settlement of Rigid Circular Foundations during Seismic Shaking in Shaking Table Tests
Online Contents | 2012
|Shallow and Deep Foundations Under Fault Rupture or Strong Seismic Shaking
British Library Conference Proceedings | 2007
|