A platform for research: civil engineering, architecture and urbanism
Rank‐revealing QR decomposition applied to damage localization in truss structures
The purpose of this work is the development of an efficient and high‐sensitive damage localization technique for truss structures, based on the rank‐revealing QR decomposition (RRQR) of the difference‐of‐flexibility matrix. The method is an enhancement of the existing techniques of damage detection, which rely on the set of so‐called damage locating vector (DLV). The advantages of the RRQR decomposition‐based DLV (RRQR‐DLV) method are its less computational effort and high sensitivity to damage. Compared with the frequently used stochastic DLV (SDLV) method, RRQR‐DLV offers higher sensitivity to damage, which has been validated based on the presented numerical simulation. The effectiveness of the proposed RRQR‐DLV method is also illustrated with the experimental validation based on a laboratory‐scale Bailey truss bridge model. The proposed method works under ambient excitation such as traffic excitation and wind excitation; therefore, it is promising for real‐time damage monitoring of truss structures. Copyright © 2016 John Wiley & Sons, Ltd.
Rank‐revealing QR decomposition applied to damage localization in truss structures
The purpose of this work is the development of an efficient and high‐sensitive damage localization technique for truss structures, based on the rank‐revealing QR decomposition (RRQR) of the difference‐of‐flexibility matrix. The method is an enhancement of the existing techniques of damage detection, which rely on the set of so‐called damage locating vector (DLV). The advantages of the RRQR decomposition‐based DLV (RRQR‐DLV) method are its less computational effort and high sensitivity to damage. Compared with the frequently used stochastic DLV (SDLV) method, RRQR‐DLV offers higher sensitivity to damage, which has been validated based on the presented numerical simulation. The effectiveness of the proposed RRQR‐DLV method is also illustrated with the experimental validation based on a laboratory‐scale Bailey truss bridge model. The proposed method works under ambient excitation such as traffic excitation and wind excitation; therefore, it is promising for real‐time damage monitoring of truss structures. Copyright © 2016 John Wiley & Sons, Ltd.
Rank‐revealing QR decomposition applied to damage localization in truss structures
An, Yonghui (author) / Błachowski, Bartłomiej (author) / Zhong, Yue (author) / Hołobut, Paweł (author) / Ou, Jinping (author)
2017-02-01
15 pages
Article (Journal)
Electronic Resource
English
RESIDUAL FORCE MINIMUM RANK UPDATE METHOD FOR DAMAGE IDENTIFICATION OF SPACE TRUSS STRUCTURES
DOAJ | 2019
|British Library Conference Proceedings | 2010
|