A platform for research: civil engineering, architecture and urbanism
Compressive sensing‐based lost data recovery of fast‐moving wireless sensing for structural health monitoring
Wireless sensor technology‐based structural health monitoring (SHM) has been widely investigated recently. This paper proposes a fast‐moving wireless sensing technique for the SHM of bridges along a highway or in a city in which the wireless sensor nodes are installed on the bridges to automatically acquire data, and a fast‐moving vehicle with an onboard wireless base station periodically collects the data without interrupting traffic. For the fast‐moving wireless sensing technique, the reliable wireless data transmission between the sensor nodes and the fast‐moving base station is one of the key issues. In fast‐moving states, the data packet loss rates during wireless data transmission between the moving base station and the sensor nodes will increase remarkably. In this paper, the data packets loss in the fast‐moving states is first investigated through a series of experiments. To solve the data packets loss problem, the compressive sensing (CS)‐based lost data recovery approach is proposed. A field test on a cable‐stayed bridge is performed to further illustrate the data packet loss in the fast‐moving wireless sensing technique and the ability of the CS‐based approach for lost data recovery. The experimental and field test results indicate that the Doppler effect is the main reason causing data packet loss for the fast‐moving wireless sensing technique, and the feasibility and efficiency of the CS‐based lost data recovery approach are validated Copyright © 2014 John Wiley & Sons, Ltd.
Compressive sensing‐based lost data recovery of fast‐moving wireless sensing for structural health monitoring
Wireless sensor technology‐based structural health monitoring (SHM) has been widely investigated recently. This paper proposes a fast‐moving wireless sensing technique for the SHM of bridges along a highway or in a city in which the wireless sensor nodes are installed on the bridges to automatically acquire data, and a fast‐moving vehicle with an onboard wireless base station periodically collects the data without interrupting traffic. For the fast‐moving wireless sensing technique, the reliable wireless data transmission between the sensor nodes and the fast‐moving base station is one of the key issues. In fast‐moving states, the data packet loss rates during wireless data transmission between the moving base station and the sensor nodes will increase remarkably. In this paper, the data packets loss in the fast‐moving states is first investigated through a series of experiments. To solve the data packets loss problem, the compressive sensing (CS)‐based lost data recovery approach is proposed. A field test on a cable‐stayed bridge is performed to further illustrate the data packet loss in the fast‐moving wireless sensing technique and the ability of the CS‐based approach for lost data recovery. The experimental and field test results indicate that the Doppler effect is the main reason causing data packet loss for the fast‐moving wireless sensing technique, and the feasibility and efficiency of the CS‐based lost data recovery approach are validated Copyright © 2014 John Wiley & Sons, Ltd.
Compressive sensing‐based lost data recovery of fast‐moving wireless sensing for structural health monitoring
Bao, Yuequan (author) / Yu, Yan (author) / Li, Hui (author) / Mao, Xingquan (author) / Jiao, Wenfeng (author) / Zou, Zilong (author) / Ou, Jinping (author)
Structural Control and Health Monitoring ; 22 ; 433-448
2015-03-01
16 pages
Article (Journal)
Electronic Resource
English
Compressive sensing of full wavefield data for Structural Health Monitoring applications
BASE | 2015
|Applications of Compressive Sensing Technique in Structural Health Monitoring
British Library Online Contents | 2013
|