A platform for research: civil engineering, architecture and urbanism
3D Printing of Anisotropic Hydrogels with Bioinspired Motion
Motion in biological organisms often relies on the functional arrangement of anisotropic tissues that linearly expand and contract in response to external signals. However, a general approach that can implement such anisotropic behavior into synthetic soft materials and thereby produce complex motions seen in biological organisms remains a challenge. Here, a bioinspired approach is presented that uses temperature‐responsive linear hydrogel actuators, analogous to biological linear contractile elements, as building blocks to create three‐dimensional (3D) structures with programmed motions. This approach relies on a generalizable 3D printing method for building 3D structures of hydrogels using a fugitive carrier with shear‐thinning properties. This study demonstrates that the metric incompatibility of an orthogonally growing bilayer structure induces a saddle‐like shape change, which can be further exploited to produce various bioinspired motions from bending to twisting. The orthogonally growing bilayer structure undergoes a transition from a stretching‐dominated motion to a bending‐dominated motion during its shape transformation. The modular nature of this approach, together with the flexibility of additive manufacturing, enables the fabrication of multimodular 3D structures with complex motions through the assembly of multiple functional components, which in turn consist of simple linear contractile elements.
3D Printing of Anisotropic Hydrogels with Bioinspired Motion
Motion in biological organisms often relies on the functional arrangement of anisotropic tissues that linearly expand and contract in response to external signals. However, a general approach that can implement such anisotropic behavior into synthetic soft materials and thereby produce complex motions seen in biological organisms remains a challenge. Here, a bioinspired approach is presented that uses temperature‐responsive linear hydrogel actuators, analogous to biological linear contractile elements, as building blocks to create three‐dimensional (3D) structures with programmed motions. This approach relies on a generalizable 3D printing method for building 3D structures of hydrogels using a fugitive carrier with shear‐thinning properties. This study demonstrates that the metric incompatibility of an orthogonally growing bilayer structure induces a saddle‐like shape change, which can be further exploited to produce various bioinspired motions from bending to twisting. The orthogonally growing bilayer structure undergoes a transition from a stretching‐dominated motion to a bending‐dominated motion during its shape transformation. The modular nature of this approach, together with the flexibility of additive manufacturing, enables the fabrication of multimodular 3D structures with complex motions through the assembly of multiple functional components, which in turn consist of simple linear contractile elements.
3D Printing of Anisotropic Hydrogels with Bioinspired Motion
Arslan, Hakan (author) / Nojoomi, Amirali (author) / Jeon, Junha (author) / Yum, Kyungsuk (author)
Advanced Science ; 6
2019-01-01
8 pages
Article (Journal)
Electronic Resource
English
Quantum Confinement in Self-Assembled Bioinspired Peptide Hydrogels
British Library Online Contents | 2010
|British Library Online Contents | 2017
|Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering
British Library Online Contents | 2018
|