A platform for research: civil engineering, architecture and urbanism
Variations in trace elements in bottom sediments of major rivers in Lake Victoria's basin, Kenya
River sediments collected between March 1994 and January 1995 were analysed for iron (Fe), manganese (Mn), zinc (Zn), lead (Pb), copper (Cu), chromium (Cr), aluminium (Al) and cadmium (Cd) in the less than 63 μm grain‐size fraction. The river sediments were characterized by a sandy texture, with a relatively low organic matter (as percentage loss on ignition), ranging 3.5–9.6%. The metal mean range values in μg/g dry weight for the river sediments were: Mn (836–2.10 × 104), Fe (1.09 × 104–9.22 × 104), Al (2.86 × 103–7.77 × 103), Zn (34–130), Cu (11–78), Cr (not detected ND–125); Pb (ND–100) and Cd (ND). Temporal variations were significant for Zn, Cr and Pb. There were no significant longitudinal differences in all the elements in rivers Nyando, Nzoia, Yala and Sondu‐Miriu, apart from sediment Fe contents. Relatively high sediment Fe, Mn, Zn, Cr and Al were observed in river Kasat. River Kasat was considered polluted with respect to Mn, Zn and Cr, which were comparatively higher than unpolluted sediments and geochemical background values. This supports similar results on surface water trace element levels. Most of the rivers drain an area of relatively similar lithological characteristics. Therefore, apart from the direct waste input into Kasat river from municipal and industrial sources, lack of specific point sources indicate lithological metal origins with localized variations. A final comparative evaluation of the river sediments’ trace metal pollution was made from the study results. The data is vital for pollution management of the lake as information about metal loadings into the lake ecosystem is lacking.
Variations in trace elements in bottom sediments of major rivers in Lake Victoria's basin, Kenya
River sediments collected between March 1994 and January 1995 were analysed for iron (Fe), manganese (Mn), zinc (Zn), lead (Pb), copper (Cu), chromium (Cr), aluminium (Al) and cadmium (Cd) in the less than 63 μm grain‐size fraction. The river sediments were characterized by a sandy texture, with a relatively low organic matter (as percentage loss on ignition), ranging 3.5–9.6%. The metal mean range values in μg/g dry weight for the river sediments were: Mn (836–2.10 × 104), Fe (1.09 × 104–9.22 × 104), Al (2.86 × 103–7.77 × 103), Zn (34–130), Cu (11–78), Cr (not detected ND–125); Pb (ND–100) and Cd (ND). Temporal variations were significant for Zn, Cr and Pb. There were no significant longitudinal differences in all the elements in rivers Nyando, Nzoia, Yala and Sondu‐Miriu, apart from sediment Fe contents. Relatively high sediment Fe, Mn, Zn, Cr and Al were observed in river Kasat. River Kasat was considered polluted with respect to Mn, Zn and Cr, which were comparatively higher than unpolluted sediments and geochemical background values. This supports similar results on surface water trace element levels. Most of the rivers drain an area of relatively similar lithological characteristics. Therefore, apart from the direct waste input into Kasat river from municipal and industrial sources, lack of specific point sources indicate lithological metal origins with localized variations. A final comparative evaluation of the river sediments’ trace metal pollution was made from the study results. The data is vital for pollution management of the lake as information about metal loadings into the lake ecosystem is lacking.
Variations in trace elements in bottom sediments of major rivers in Lake Victoria's basin, Kenya
Mwamburi, Job (author)
Lakes & Reservoirs: Research & Management ; 8 ; 5-13
2003-03-01
9 pages
Article (Journal)
Electronic Resource
English
Variations in trace elements in bottom sediments of major rivers in Lake Victoria's basin, Kenya
Online Contents | 2003
|Tema Archive | 1981