A platform for research: civil engineering, architecture and urbanism
Impact of five selected xenobiotics on isolated ammonium oxidizers and on nitrifying activated sludge
10.1002/tox.20199.abs
Sewage treatment plants (STPs) are usual receptors of xenobiotic compounds that have to be cotreated with municipal wastewaters before being discharged to the water environment. The presence of organic contaminants, such as surfactants, polycyclic aromatic hydrocarbons (PAHs), phthalates, and their primary degradation products in the influents of STPs may inhibit irreversibly sensitive biological processes, such as nitrification. The first step of nitrification, i.e., the oxidation of ammonium to nitrite (nitritification), is particularly sensitive. Inhibition of this step under uncontrolled conditions may completely inhibit biological nitrogen removal. The aim of this work was to study the possible inhibitory effect of five selected xenobiotics on (a) a mixed culture of ammonium‐oxidizing bacteria isolated from activated sludge and (b) nitrifying activated sludge directly. The xenobiotics that were tested include nonylphenols (NP), nonylphenolethoxylates (NPEO), linear alkylbenzene sulfonates (LAS), di(2‐ethylhexyl) phthalate (DEHP), as a representative phthalate ester, and the PAH phenanthrene. Remarkable inhibitory effects for all tested compounds were observed in this study even at xenobiotic concentrations as low as 1 mg/L. The observed inhibition of xenobiotics on nitrifying activated sludge was less pronounced, because of the masking effect exerted by the sludge flocs, but was still significant for many of the tested substances at concentrations up to 10 mg/L. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 310–316, 2006.
Impact of five selected xenobiotics on isolated ammonium oxidizers and on nitrifying activated sludge
10.1002/tox.20199.abs
Sewage treatment plants (STPs) are usual receptors of xenobiotic compounds that have to be cotreated with municipal wastewaters before being discharged to the water environment. The presence of organic contaminants, such as surfactants, polycyclic aromatic hydrocarbons (PAHs), phthalates, and their primary degradation products in the influents of STPs may inhibit irreversibly sensitive biological processes, such as nitrification. The first step of nitrification, i.e., the oxidation of ammonium to nitrite (nitritification), is particularly sensitive. Inhibition of this step under uncontrolled conditions may completely inhibit biological nitrogen removal. The aim of this work was to study the possible inhibitory effect of five selected xenobiotics on (a) a mixed culture of ammonium‐oxidizing bacteria isolated from activated sludge and (b) nitrifying activated sludge directly. The xenobiotics that were tested include nonylphenols (NP), nonylphenolethoxylates (NPEO), linear alkylbenzene sulfonates (LAS), di(2‐ethylhexyl) phthalate (DEHP), as a representative phthalate ester, and the PAH phenanthrene. Remarkable inhibitory effects for all tested compounds were observed in this study even at xenobiotic concentrations as low as 1 mg/L. The observed inhibition of xenobiotics on nitrifying activated sludge was less pronounced, because of the masking effect exerted by the sludge flocs, but was still significant for many of the tested substances at concentrations up to 10 mg/L. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 310–316, 2006.
Impact of five selected xenobiotics on isolated ammonium oxidizers and on nitrifying activated sludge
Dokianakis, S. N. (author) / Kornaros, M. (author) / Lyberatos, G. (author)
Environmental Toxicology ; 21 ; 310-316
2006-08-01
7 pages
Article (Journal)
Electronic Resource
English
Culture and Enrichment of Denitrifying Phosphorus Removing Sludge and Nitrifying Activated Sludge
British Library Online Contents | 2012
|Simplified Add-on Biological Phosphorous Removal for Nitrifying Activated Sludge Processes
British Library Conference Proceedings | 1996
|British Library Conference Proceedings | 2011
|