A platform for research: civil engineering, architecture and urbanism
Adsorption Kinetics of Chloroform from Aqueous Solutions onto Activated Lignite
The lignite coal researched by this study was subjected to a two‐stage activation process performed in the scope of obtaining active carbon from domestic resources. “Activation” and “carbonization” stages were used in the experiments. The modified lignite was produced by impregnating lignite with KOH and washing the activation product with 15% HCl solution after thermal treatment. Increasing KOH dosage also increased the removal efficiency. The variables investigated in adsorption experiments were contact time, initial concentration, pH, and sorbent dosage. Adsorption kinetics was fitted by using the pseudo‐first‐order equation, pseudo‐second‐order equation, and intra‐particle diffusion. Isotherm modeling was carried out using Langmuir, Freundlich, and Dubinin–Radushkevich equations. Selected target compound in this work is common environmental pollutant in waters. A commonly known effect of chloroform is its carcinogenic effect. Therefore, removal of these compounds from water is considerably important. Chloroform removal of 97% for was achieved by the use of Konya region activated lignite.
Adsorption Kinetics of Chloroform from Aqueous Solutions onto Activated Lignite
The lignite coal researched by this study was subjected to a two‐stage activation process performed in the scope of obtaining active carbon from domestic resources. “Activation” and “carbonization” stages were used in the experiments. The modified lignite was produced by impregnating lignite with KOH and washing the activation product with 15% HCl solution after thermal treatment. Increasing KOH dosage also increased the removal efficiency. The variables investigated in adsorption experiments were contact time, initial concentration, pH, and sorbent dosage. Adsorption kinetics was fitted by using the pseudo‐first‐order equation, pseudo‐second‐order equation, and intra‐particle diffusion. Isotherm modeling was carried out using Langmuir, Freundlich, and Dubinin–Radushkevich equations. Selected target compound in this work is common environmental pollutant in waters. A commonly known effect of chloroform is its carcinogenic effect. Therefore, removal of these compounds from water is considerably important. Chloroform removal of 97% for was achieved by the use of Konya region activated lignite.
Adsorption Kinetics of Chloroform from Aqueous Solutions onto Activated Lignite
Tongur, Süheyla (author) / Aydin, Mehmet Emin (author)
CLEAN – Soil, Air, Water ; 41 ; 32-36
2013-01-01
5 pages
Article (Journal)
Electronic Resource
English
Study of adsorption of methylene blue onto activated carbon from lignite
British Library Online Contents | 2015
|Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions
British Library Online Contents | 2009
|