A platform for research: civil engineering, architecture and urbanism
Experimental and analytical studies of structures seismically isolated with an uplift‐restraining friction pendulum system
10.1002/eqe.546.abs
This paper presents findings from a comprehensive analytical and experimental study on the uplift‐restraining XY‐FP sliding isolation system. To investigate the effectiveness of the XY‐FP isolator and provide a rational basis for evaluating the efficacy of the developed mathematical model, an extensive experimental program was conducted on the earthquake simulator at the University at Buffalo. The experimental program involved a slender, five‐storey, scale‐model frame seismically isolated with four XY‐FP isolators subjected to simulations of historical horizontal and vertical ground motions. The experimental response demonstrates the validity of the concept and provides evidence for the effectiveness of the XY‐FP isolator in preventing uplift. A comprehensive analytical model capable of emulating the mechanical behaviour of the XY‐FP isolator is developed and implemented in program 3D‐BASIS‐ME. The newly enhanced program is used to predict the dynamic response of the seismically‐isolated model structure. Comparison of analytical predictions with experimental results attests to the efficacy of the analytical model for simulating the response of the XY‐FP isolator. With its appealing conceptual simplicity and its proven effectiveness, the new uplift‐restraining isolator has the potential to facilitate the application of seismic isolation even under the most extreme of conditions, including but not limited to near‐fault strong ground motions and uplift‐prone structural systems. Copyright © 2005 John Wiley & Sons, Ltd.
Experimental and analytical studies of structures seismically isolated with an uplift‐restraining friction pendulum system
10.1002/eqe.546.abs
This paper presents findings from a comprehensive analytical and experimental study on the uplift‐restraining XY‐FP sliding isolation system. To investigate the effectiveness of the XY‐FP isolator and provide a rational basis for evaluating the efficacy of the developed mathematical model, an extensive experimental program was conducted on the earthquake simulator at the University at Buffalo. The experimental program involved a slender, five‐storey, scale‐model frame seismically isolated with four XY‐FP isolators subjected to simulations of historical horizontal and vertical ground motions. The experimental response demonstrates the validity of the concept and provides evidence for the effectiveness of the XY‐FP isolator in preventing uplift. A comprehensive analytical model capable of emulating the mechanical behaviour of the XY‐FP isolator is developed and implemented in program 3D‐BASIS‐ME. The newly enhanced program is used to predict the dynamic response of the seismically‐isolated model structure. Comparison of analytical predictions with experimental results attests to the efficacy of the analytical model for simulating the response of the XY‐FP isolator. With its appealing conceptual simplicity and its proven effectiveness, the new uplift‐restraining isolator has the potential to facilitate the application of seismic isolation even under the most extreme of conditions, including but not limited to near‐fault strong ground motions and uplift‐prone structural systems. Copyright © 2005 John Wiley & Sons, Ltd.
Experimental and analytical studies of structures seismically isolated with an uplift‐restraining friction pendulum system
Roussis, Panayiotis C. (author) / Constantinou, Michael C. (author)
Earthquake Engineering & Structural Dynamics ; 35 ; 595-611
2006-04-25
17 pages
Article (Journal)
Electronic Resource
English
Uplift-restraining Friction Pendulum seismic isolation system
Online Contents | 2006
|