A platform for research: civil engineering, architecture and urbanism
10.1002/eqe.564.abs
To ensure the high quality of ultra‐precision products such as semiconductors and optical microscopes, high‐tech equipment used to make these products requires a normal working environment with extremely limited vibration. Some of high‐tech industry centres are also located in seismic zones: the safety of high‐tech equipment during an earthquake event becomes a critical issue. It is thus imperative to find an effective way to ensure the functionality of high‐tech equipment against microvibration and to protect high‐tech equipment from damage when earthquake events occur. This paper explores the possibility of using a hybrid platform to mitigate two types of vibration. The hybrid platform, on which high‐tech equipment is installed, is designed to work as a passive isolation platform to abate mainly acceleration response of high‐tech equipment during an earthquake and to function as an actively controlled platform to reduce mainly velocity response of high‐tech equipment under normal working condition. To examine the performance of the hybrid platform, the analytical model of a coupled hybrid platform and building system incorporating with magnetostrictive actuators is established. The simulation results obtained by applying the analytical model to a high‐tech facility indicate that the proposed hybrid platform is feasible and effective. Copyright © 2006 John Wiley & Sons, Ltd.
10.1002/eqe.564.abs
To ensure the high quality of ultra‐precision products such as semiconductors and optical microscopes, high‐tech equipment used to make these products requires a normal working environment with extremely limited vibration. Some of high‐tech industry centres are also located in seismic zones: the safety of high‐tech equipment during an earthquake event becomes a critical issue. It is thus imperative to find an effective way to ensure the functionality of high‐tech equipment against microvibration and to protect high‐tech equipment from damage when earthquake events occur. This paper explores the possibility of using a hybrid platform to mitigate two types of vibration. The hybrid platform, on which high‐tech equipment is installed, is designed to work as a passive isolation platform to abate mainly acceleration response of high‐tech equipment during an earthquake and to function as an actively controlled platform to reduce mainly velocity response of high‐tech equipment under normal working condition. To examine the performance of the hybrid platform, the analytical model of a coupled hybrid platform and building system incorporating with magnetostrictive actuators is established. The simulation results obtained by applying the analytical model to a high‐tech facility indicate that the proposed hybrid platform is feasible and effective. Copyright © 2006 John Wiley & Sons, Ltd.
Hybrid platform for high‐tech equipment protection against earthquake and microvibration
Earthquake Engineering & Structural Dynamics ; 35 ; 943-967
2006-07-10
25 pages
Article (Journal)
Electronic Resource
English
Hybrid platform for high-tech equipment protection against earthquake and microvibration
Online Contents | 2006
|