A platform for research: civil engineering, architecture and urbanism
Recent Advances in Layered Metal‐Oxide Cathodes for Application in Potassium‐Ion Batteries
To meet future energy demands, currently, dominant lithium‐ion batteries (LIBs) must be supported by abundant and cost‐effective alternative battery materials. Potassium‐ion batteries (KIBs) are promising alternatives to LIBs because KIB materials are abundant and because KIBs exhibit intercalation chemistry like LIBs and comparable energy densities. In pursuit of superior batteries, designing and developing highly efficient electrode materials are indispensable for meeting the requirements of large‐scale energy storage applications. Despite using graphite anodes in KIBs instead of in sodium‐ion batteries (NIBs), developing suitable KIB cathodes is extremely challenging and has attracted considerable research attention. Among the various cathode materials, layered metal oxides have attracted considerable interest owing to their tunable stoichiometry, high specific capacity, and structural stability. Therefore, the recent progress in layered metal‐oxide cathodes is comprehensively reviewed for application to KIBs and the fundamental material design, classification, phase transitions, preparation techniques, and corresponding electrochemical performance of KIBs are presented. Furthermore, the challenges and opportunities associated with developing layered oxide cathode materials are presented for practical application to KIBs.
Recent Advances in Layered Metal‐Oxide Cathodes for Application in Potassium‐Ion Batteries
To meet future energy demands, currently, dominant lithium‐ion batteries (LIBs) must be supported by abundant and cost‐effective alternative battery materials. Potassium‐ion batteries (KIBs) are promising alternatives to LIBs because KIB materials are abundant and because KIBs exhibit intercalation chemistry like LIBs and comparable energy densities. In pursuit of superior batteries, designing and developing highly efficient electrode materials are indispensable for meeting the requirements of large‐scale energy storage applications. Despite using graphite anodes in KIBs instead of in sodium‐ion batteries (NIBs), developing suitable KIB cathodes is extremely challenging and has attracted considerable research attention. Among the various cathode materials, layered metal oxides have attracted considerable interest owing to their tunable stoichiometry, high specific capacity, and structural stability. Therefore, the recent progress in layered metal‐oxide cathodes is comprehensively reviewed for application to KIBs and the fundamental material design, classification, phase transitions, preparation techniques, and corresponding electrochemical performance of KIBs are presented. Furthermore, the challenges and opportunities associated with developing layered oxide cathode materials are presented for practical application to KIBs.
Recent Advances in Layered Metal‐Oxide Cathodes for Application in Potassium‐Ion Batteries
Nathan, Muthu Gnana Theresa (author) / Yu, Hakgyoon (author) / Kim, Guk‐Tae (author) / Kim, Jin‐Hee (author) / Cho, Jung Sang (author) / Kim, Jeha (author) / Kim, Jae‐Kwang (author)
Advanced Science ; 9
2022-06-01
34 pages
Article (Journal)
Electronic Resource
English
Recent advances in 2D heterostructures as advanced electrode materials for potassium-ion batteries
BASE | 2022
|Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries
British Library Online Contents | 2008
|