A platform for research: civil engineering, architecture and urbanism
Hybrid electrochemical/membrane couplings processes for enhancing seawater pretreatment and desalination
This research focuses on boosting seawater pretreatment and desalination through electrocoagulation (EC)/ultrafiltration (UF) and electrocoagulation (EC)/nanofiltration (NF) processes. We first optimized the key parameters of the EC process using aluminum (Al) and iron (Fe) electrodes. Experimental results show EC process is efficient under optimal conditions. Second, membrane filtration using UF (ES10B), NF(UTC60) and NF(200) as post‐processing steps to the EC process were experimented with. EC(Al)/NF(UTC60) combination resulted in the highest removal rate of organic matter (COD 98%, TOC 95%, fluorescence [humic and fulvic acids] 68%), optical density (OD600nm 75%, turbidity 70%, conductivity 64%). In terms of major ions removal, up to 55% was achieved as NF decreases conductivity, salinity, and hardness. EC(Al)/NF(UTC60) seawater permeate demonstrated the best results in terms of lowest flux decline (J/Jo = 0.9) and fouling, which was realized by resistance in series and recovery factor rate (%). Additionally, NF(UTC60) fouling reversibility led to a longer lifetime and higher recovery factor (93%). Pretreatment by hybrid processes was experimented with to enhance the saline water treatment. Organic matter (COD 98%, TOC 95%, fluorescence [humic and fulvic acids] 68%) and turbidity were successfully removed. Salinity and hardness (conductivity 64%) were highly reduced by NF. Flux decline, retention rate, and membrane fouling were studied.
Hybrid electrochemical/membrane couplings processes for enhancing seawater pretreatment and desalination
This research focuses on boosting seawater pretreatment and desalination through electrocoagulation (EC)/ultrafiltration (UF) and electrocoagulation (EC)/nanofiltration (NF) processes. We first optimized the key parameters of the EC process using aluminum (Al) and iron (Fe) electrodes. Experimental results show EC process is efficient under optimal conditions. Second, membrane filtration using UF (ES10B), NF(UTC60) and NF(200) as post‐processing steps to the EC process were experimented with. EC(Al)/NF(UTC60) combination resulted in the highest removal rate of organic matter (COD 98%, TOC 95%, fluorescence [humic and fulvic acids] 68%), optical density (OD600nm 75%, turbidity 70%, conductivity 64%). In terms of major ions removal, up to 55% was achieved as NF decreases conductivity, salinity, and hardness. EC(Al)/NF(UTC60) seawater permeate demonstrated the best results in terms of lowest flux decline (J/Jo = 0.9) and fouling, which was realized by resistance in series and recovery factor rate (%). Additionally, NF(UTC60) fouling reversibility led to a longer lifetime and higher recovery factor (93%). Pretreatment by hybrid processes was experimented with to enhance the saline water treatment. Organic matter (COD 98%, TOC 95%, fluorescence [humic and fulvic acids] 68%) and turbidity were successfully removed. Salinity and hardness (conductivity 64%) were highly reduced by NF. Flux decline, retention rate, and membrane fouling were studied.
Hybrid electrochemical/membrane couplings processes for enhancing seawater pretreatment and desalination
Aouni, Anissa (author) / Tounakti, Rim (author) / Ahmed, Badiaa Ait (author) / Hafiane, Amor (author)
2024-01-01
19 pages
Article (Journal)
Electronic Resource
English
Iron And Manganese Removal For Seawater Desalination Pretreatment
British Library Conference Proceedings | 2013
|PRETREATMENT DEVICE FOR SEAWATER DESALINATION BASED ON ULTRAFILTRATION
European Patent Office | 2024
|