A platform for research: civil engineering, architecture and urbanism
Bat‐cave catchment areas: using stable isotopes (δD) to determine the probable origins of hibernating bats
The application of stable hydrogen isotope (δD) techniques has swiftly advanced our understanding of animal movements, but this progression is dominated by studies of birds and relatively long‐distance, north–south migrants. This dominance reflects the challenge of incorporating multiple sources of error into geographic assignments and the nature of spatially explicit δD models, which possess greater latitudinal than longitudinal resolution. However, recent progress in likelihood‐based assignments that incorporate multiple sources of isotopic error and Bayesian approaches that include additional sources of information may advance finer‐scale understanding of animal movements. We develop a stable‐isotope method for determining probable origins of bats within hibernacula and show that this method produces spatially explicit, continuous assignments with regional resolution. We outline how these assignments can be used to infer hibernacula connectivity, an application that could inform spatial modeling of white‐nose syndrome. Additionally, estimates of seasonal and annual flight distances for many cave‐dwelling bat species can be derived from this approach. We also discuss how this application can be used in general to provide insights into variable migratory and foraging strategies within bat populations.
Bat‐cave catchment areas: using stable isotopes (δD) to determine the probable origins of hibernating bats
The application of stable hydrogen isotope (δD) techniques has swiftly advanced our understanding of animal movements, but this progression is dominated by studies of birds and relatively long‐distance, north–south migrants. This dominance reflects the challenge of incorporating multiple sources of error into geographic assignments and the nature of spatially explicit δD models, which possess greater latitudinal than longitudinal resolution. However, recent progress in likelihood‐based assignments that incorporate multiple sources of isotopic error and Bayesian approaches that include additional sources of information may advance finer‐scale understanding of animal movements. We develop a stable‐isotope method for determining probable origins of bats within hibernacula and show that this method produces spatially explicit, continuous assignments with regional resolution. We outline how these assignments can be used to infer hibernacula connectivity, an application that could inform spatial modeling of white‐nose syndrome. Additionally, estimates of seasonal and annual flight distances for many cave‐dwelling bat species can be derived from this approach. We also discuss how this application can be used in general to provide insights into variable migratory and foraging strategies within bat populations.
Bat‐cave catchment areas: using stable isotopes (δD) to determine the probable origins of hibernating bats
Sullivan, Alexis R. (author) / Bump, Joseph K. (author) / Kruger, Laura A. (author) / Peterson, Rolf O. (author)
Ecological Applications ; 22 ; 1428-1434
2012-07-01
7 pages
Article (Journal)
Electronic Resource
English
Using stable isotopes to determine filtration origins
British Library Conference Proceedings | 1997
|The Sisia Cave Bats of Bamenda, Cameroon
Online Contents | 1994
|Renal Mitochondrial Response to Low Temperature in Non-Hibernating and Hibernating Species
British Library Online Contents | 2017